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As humans, we are adept learning machines. Long before a baby learns 
that she can change a sheet of paper by crumpling it, she is absorbing 
vast amounts of information. This learning continues throughout life in 

myriad ways: learning to ride a bike and to take social cues from friends; learning 
to drive a car and balance a checkbook; learning to solve a quadratic equation 
and to interpret a work of art.

Of course, much of learning is necessary for survival, and even the simplest 
organisms learn to avoid danger and recognize food. However, humans are 
especially gifted in that we also acquire skills and knowledge to make our lives 
richer and more meaningful. Many students would agree that reading novels 
and watching movies enhance the quality of our lives because we can expand our 
horizons by vicariously being in situations we would never experience, reacting 
sympathetically or unsympathetically to characters who remind us of ourselves 
or are very different from anyone we have ever known. Strangely, at least to us 
as science professors, science courses are rarely thought of as being enriching or 
insightful into the human condition. Larry Gould, a former president of Carleton 
College, was also a geologist and an Arctic explorer. As a scientist, teacher, and 
administrator, he was very interested in science education especially as it related 
to other disciplines. In his inaugural address when he became president he said, 
“Science is a part of the same whole as philosophy and the other fields of learn-
ing. They are not mutually exclusive disciplines but they are independent and 
overlapping.” Our goal was to write a book that encourages students to appreci-
ate biochemistry in this broader sense, as a way to enrich their understanding of 
the world.

Preface
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vi   Preface

New to this Edition
This third edition takes into account recent discoveries and advances that have 
changed how we think about the fundamental concepts in biochemistry and 
human health. To meet the needs of instructors and students alike, particular 
attention has been paid to the topics outlined below.

Expanded Physiological Focus
A hallmark feature of Biochemistry: A Short Course is its physiological perspective 
on biochemical processes and its integration of clinical examples to apply and 
reinforce concepts. In the third edition, we build on this aspect of the book with:
• A NEW section: “Mutations in Genes Encoding Hemoglobin Subunits Can 
Result in Disease” (Chapter 9)
• 17 new Clinical Insights, demonstrating the relevance of biochemistry to 
human health and disease.
Features highlighting the physiological aspect of biochemistry have been 
expanded, and include the following:

 CLINICAL INSIGHTS
In the Clinical Insights, students see how the concepts most 
recently considered affect an aspect of a disease or its cure. By 
exploring biochemical concepts in the context of a disease, stu-
dents learn how these concepts are relevant to human life and 
what happens when biochemistry goes awry.

 BIOLOGICAL INSIGHTS
Biochemistry affects every aspect of our world, sometimes in 
strange and amazing ways. Like Clinical Insights, Biological 
Insights bolster students’ understanding of biochemical concepts 
as they learn how simple changes in biochemical processes can 
have dramatic effects.

For a complete list of clinical and biological insights see 
pages xi–xii.

NUTRITIONAL EXAMPLES
Examples of the underlying relationship between nutrition and 
biochemistry abound.

Increased Coverage of the Fundamentals
The third edition features a greater emphasis on the fundamen-
tals of biochemistry, specifically where metabolism is concerned 
(Chapters 14 and 15). In an effort to explain metabolism more 
fully, we’ve expanded on the following areas within Chapters 14 
and 15:
• Digestive enzymes
• Protein digestion
• Celiac disease
• Energy
• Phosphates in biochemical processes

Summary 199
can insert into the hydrophobic interior of the membrane and localize the protein 
to the membrane surface. Such localization is required for protein function. Three 
such attachments are shown in Figure 11.10: (1) a palmitoyl group attached to a 
cysteine residue by a thioester bond, (2) a farnesyl group attached to a cysteine 
residue at the carboxyl terminus, and (3) a glycolipid structure termed a glyco-
sylphosphatidylinositol (GPI) anchor attached to the carboxyl terminus.

Figure 11.11 Hutchinson–gilford	progeria	syndrome	(HgPS).  (a) a 
15-year-old boy suffering from hGpS. (B) a normal nucleus. (c) a nucleus from a 
hGpS patient. [(a) ap photo/Gerald herbert; (B and c) Scaffidi, p., Gordon, L. and 
Misteli, T. (2005). The call nucleus and aging: Tantalizing clues and hopeful promises. 
PLoS Biol 3 (11): e395. courtesy of paola Scaffidi.]

CLInICAL	InSIgHT
Premature	Aging	Can	Result	from	the	Improper	Attachment		
of	a	Hydrophobic	group	to	a	Protein
Farnesyl is a hydrophobic group that is often 
attached to proteins, usually so that the protein is 
able to associate with a membrane (Figure 11.10). 
Inappropriate farnesylation has been shown to result 
in Hutchinson–Gilford progeria syndrome (HGPS), 
a rare disease of premature aging. Early postnatal 
development is normal, but the children fail to 
thrive, develop bone abnormalities, and have a small 
beaked nose, a receding jaw, and a complete loss of 
hair (Figure 11.11). Affected children usually die at 
an average age of 13 years of severe atherosclerosis, a 
cause of death more commonly seen in the elderly.

The cause of HGPS appears to be a mutation in 
the gene for the nuclear protein lamin, a protein that 
forms a scaffold for the nucleus and may take part in 
the regulation of gene expression. The folded 
polypeptide that will eventually become lamin is  
modified and processed many times before the 
mature protein is produced. One key processing 
event is the removal of a farnesyl group that had 
been added to the nascent protein earlier in 
processing. In HGPS patients, the farnesyl group is 
not removed, owing to a mutation in the lamin. The incorrectly processed lamin 
results in a deformed nucleus (Figure 11.11) and aberrant nuclear function that 
results in HGPS. Much research remains to determine precisely how the failure 
to remove the farnesyl group leads to such dramatic consequences.

SUMMARy

11.1	 Fatty	Acids	Are	a	Main	Source	of	Fuel
Lipids are defined as water-insoluble molecules that are soluble in organic 
solvents. Fatty acids are an important lipid in biochemistry. Fatty acids are 
hydrocarbon chains of various lengths and degrees of unsaturation that ter-
minate with a carboxylic acid group. The fatty acid chains in membranes 
usually contain between 14 and 24 carbon atoms; they may be saturated or 
unsaturated. Short chain length and unsaturation enhance the fluidity of 
fatty acids and their derivatives by lowering the melting temperature.

11.2	 Triacylglycerols	Are	the	Storage	Form	of	Fatty	Acids
Fatty acids are stored as triacylglycerol molecules in adipose cells. Triacylg-
lycerols are composed of three fatty acids esterified to a glycerol backbone. 
Triacylglycerols are stored in an anhydrous form.

11.3	 There	Are	Three	Common	Types	of	Membrane	Lipids
The major classes of membrane lipids are phospholipids, glycolipids, 
and cholesterol. Phosphoglycerides, a type of phospholipid, consist of a 

(A)

(B)

(C)
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BIOLOgICAL InsIghT

The Dead Zone: Too Much Respiration
Some marine organisms perform so much cellular respiration, and therefore 
consume so much molecular oxygen, that the oxygen concentration in the 
water is decreased to a level that is too low to sustain other organisms. One 
such hypoxic (low levels of oxygen) zone is in the northern Gulf of Mexico, 
off the coast of Louisiana where 
the Mississippi River flows into 
the Gulf (Figure 20.16). The 
Mississippi is extremely nutrient 
rich due to agricultural runoff; so 
plant microorganisms, called 
phytoplankton, proliferate so 
robustly that they exceed the 
amount that can be consumed by 
other members of the food chain. 
When the phytoplankton die, they 
sink to the bottom and are 
consumed by aerobic bacteria. 
The aerobic bacteria thrive to 
such a degree that other bottom-
dwelling organisms, such as 
shrimp and crabs, cannot obtain 
enough O2 to survive. The term 
“dead zone” refers to the inability 
of this area to support fisheries.

Toxic Derivatives of Molecular Oxygen such As superoxide Radical Are 
scavenged by Protective Enzymes
Molecular oxygen is an ideal terminal electron acceptor because its high 
affinity for electrons provides a large thermodynamic driving force. However, 
the reduction of O2 can result in dangerous side reactions. The transfer of four 
electrons leads to safe products (two molecules of H2O), but partial reduction 
generates hazardous compounds. In particular, the transfer of a single electron 

In anaerobic respiration in some 
organisms, chemicals other than oxygen 
are used as the final electron acceptor in 
an electron-transport chain. Because 
none of these electron acceptors are as 
electropositive as O2 , not as much energy 
is released and, consequently, not as 
much ATP is generated.

DiD You Know?
Figure 20.16 The gulf of Mexico dead 
zone. The size of the dead zone in the Gulf of 
Mexico off Louisiana varies annually but may 
extend from the Louisiana and Alabama coasts 
to the westernmost coast of Texas. reds and 
oranges represent high concentrations of 
phytoplankton and river sediment. [NASA/
Goddard Space Flight Center/Scientific 
Visualization Studio.]
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Teaching and Learning Tools
In addition to providing an engaging contextual framework for the biochemis-
try throughout the book, we have created several opportunities for students to 
check their understanding, reinforce connections across the book, and practice 
what they have learned. These opportunities present themselves both in features 
throughout the text and in the many resources offered in LaunchPad.

ACTIVE LEARNING RESOURCES
In this new edition, we’ve responded to instructor requests to provide 
resources that aid in creating an active classroom environment. All of the new 
media resources for Biochemistry: A Short Course will be available in our new 

 system. For more information on LaunchPad see page ix. To 
help students adapt to an interactive course, we’ve added the following resources:

NEW Case Studies are a series of online biochemistry case studies that 
are assignable and assessable. Authored by Justin Hines, Assistant Professor of 
Chemistry at Lafayette College, each case study gives students practice in work-
ing with data, developing critical thinking skills, connecting topics, and applying 
knowledge to real scenarios. We also provide instructional guidance with each 
case study (with suggestions on how to use the case in the classroom) and aligned 
assessment questions for quizzes and exams.

NEW Clicker Questions are aligned with key concepts and misconceptions 
in each chapter so instructors can assess student understanding in real time dur-
ing lectures.

END-OF-CHAPTER PROBLEMS
Each chapter includes a robust set of practice problems. We have revised and 
added to the total number of questions in the third edition.

• Data Interpretation Problems train students to analyze data and reach 
scientific conclusions.

• Chapter Integration Problems draw connections between concepts across 
chapters.

• Challenge Problems require calculations, understanding of chemical 
structures, and other concepts that are challenging for most students.

Brief solutions to all the end-of-chapter problems are provided in the 
“Answers to Problems” section in the back of the textbook. We are also pleased 
to offer expanded solutions in the accompanying Student Companion, by Frank 
Deis, Nancy Counts Gerber, Richard Gumport, and Roger Koeppe. (For more 
details on this supplement see page x.)

MARGIN FEATURES
We use the margin features in the textbook in several ways to help engage stu-
dents, emphasize the relevance of biochemistry to their lives, and make it more 
accessible. We have given these features a new look to make them clearer and 
more easily identifiable.
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• Quick Quizzes emulate that moment in a lecture when a professor asks, 
“Do you get it?” These questions allow students to check their understanding of 
the material as they read it so they can immediately gauge whether they need to 
review a discussion or can advance to the next topic. Answers are given at the 
end of each chapter. 

• Margin Structures provide a quick reminder 
of a molecule or group that students may have 
seen earlier in the book or in another course. 
This allows students to understand the topic at 
hand without needing to look up a basic structure 
or organic chemistry principle elsewhere. 

• Did You Know? features are short asides 
to the biochemical topic being discussed. 
They put a personal face on science, or, 
in the vein of Biological Insights, provide 
glimpses of how we use biochemistry in 
everyday life.

• Nutrition Facts highlight essential vitamins in the margin next to where 
they are discussed as part of an enzyme mechanism or metabolic pathway. 
In these boxes, students will discover how we obtain vitamins from our 
diets and what happens if we do not have enough of them. These important 
molecules and their structures are listed in table form in the appendix of the 
book as well, to help students easily find where each vitamin is discussed in 
the book. 

254 14 Digestion: Turning a Meal into Cellular Biochemicals

+

INTESTINAL CELLLUMEN

Triacylglycerols

Fatty acids

Lipases

Monoacylglycerols

H2O

FABP
FATP

SER
Phospholipids,

cholesterol,
and proteins

Triacylglycerols

Chylomicrons To lymph
system

TAGTAG

Figure 14.10 Chylomicron formation. Free fatty acids and monoacylglycerols are absorbed 
by intestinal epithelial cells. Triacylglycerols are resynthesized and packaged with other lipids and 
proteins to form chylomicrons, which are then released into the lymph system.

After a meal rich in lipids, the blood appears milky because of the high 
 content of chylomicrons. These particles bind to membrane-bound lipoprotein 
lipases, primarily at adipose tissue and muscle, where the triacylglycerols are 
once again degraded into free fatty acids and monoacylglycerol for transport into 
the tissue. The triacylglycerols are then resynthesized and stored. In the muscle 
and other tissues, they can be oxidized to provide energy, as will be discussed in 
Chapter 27. Chylomicrons also function in the transport of fat-soluble vitamins 
and cholesterol.

QUICk QUIz explain why a person 
who has a trypsinogen deficiency will 

suffer from more digestion difficulties than 
will a person lacking most other zymogens.

?

Figure 14.11 A rattlesnake poised to 
strike. rattlesnakes inject digestive enzymes 
into their prospective meals. [Biosphoto/
Daniel Heuclin.]

BIOLOgICAL InSIgHT

Snake Venoms Digest from the Inside Out
Most animals ingest food and, in response to this ingestion, produce enzymes 
that digest the food. Many venomous snakes, on the other hand, do the 
opposite. They inject digestive enzymes into their prospective meals to begin 
the digestion process from the inside out, before they even consume the meals.

Snake venom, a highly modified form of saliva, consists of 50 to 60 
different protein and peptide components that differ among species of snake 
and possibly even among individual snakes of the same species. Consider 
rattlesnakes (Figure 14.11). Rattlesnake venom contains a host of enzymes 
that digest the tissues of the victim. Phospholipases digest cell membranes at 
the site of the snakebite, causing a loss of cellular components. The 
phospholipases also disrupt the membranes of red blood cells, destroying them 
(a process called hemolysis). Collagenase digests the protein collagen, a major 
component of connective tissue (p. 56), whereas hyaluronidase digests 
hyaluronidate, a glycosaminoglycan (p. 178) component of connective tissue. 
The combined action of both collagenase and hyaluronidase is to destroy 
tissue at the site of the bite, enabling the venom to spread more readily 
throughout the victim.

Various proteolytic enzymes in the venom degrade basement membranes 
(a thin sheet of fibrous proteins, including collagen, that underlies the epithelial 
cells) and components of the extracellular matrix, leading to severe tissue 
damage. Some venoms contain proteolytic enzymes that stimulate the 
formation of blood clots as well as enzymes that digest blood clots. The net 
effect of these enzymes acting in concert may be to deplete all clotting factors 
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The electron donor in most reductive biosyntheses is NADPH, the reduced form 
of nicotinamide adenine dinucleotide phosphate (NADP+). NADPH  differs from 
NADH in that the 2′-hydroxyl group of its adenosine moiety is esterified with 
phosphate (Figure 15.16). NADPH carries electrons in the same way as NADH. 
However, NADPH is used almost exclusively for reductive  biosyntheses, whereas 
NADH is used primarily for the generation of ATP. The extra phosphoryl group 
on NADPH is a tag that enables enzymes to distinguish between high-potential 
electrons to be used in anabolism and those to be used in catabolism.

3. An Activated Carrier of Two-Carbon Fragments. Coenzyme A (also called 
 CoA-SH), another central molecule in metabolism, is a carrier of acyl groups 
(Figure 15.17). A key constituent of coenzyme A is the vitamin pantothenate. 
Acyl groups are important constituents both in catabolism, as in the oxidation 
of fatty acids, and in anabolism, as in the synthesis of membrane lipids. The 
 terminal sulfhydryl group in CoA is the reactive site. Acyl groups are linked to 
the sulfhydryl group of CoA by thioester bonds. The resulting derivative is 
called an acyl CoA. An acyl group often linked to CoA is the acetyl unit; this 
derivative is called acetyl CoA. The ΔG°′ for the hydrolysis of acetyl CoA has a 
large negative value:

Acetyl CoA + H2O m  acetate + CoA + H+

ΔG°′ = −31.4 kJ mol−1 (−7.5 kcal mol−1)

Reactive site

O

HO OH

N+

O

P
O

P
O O

HO

N

N

N

N

O

O

O

O

NH2

NH2
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H

H H

H

–

–

H

H

3
2–OPO

Figure 15.16 The structure of 
nicotinamide adenine dinucleotide 
phosphate (NADP+). NaDp+ provides 
electrons for biosynthetic purposes. Notice 
that the reactive site is the same in NaDp+ 
and NaD+.
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Figure 15.17 The structure of coenzyme 
A (CoA-SH).
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The hydrolysis of a thioester is thermodynamically more favorable than that of an 
oxygen ester, such as those in fatty acids, because the electrons of the C=O bond 
form less stable resonance structures with the C−S bond than with the C−O 
bond. Consequently, acetyl CoA has a high acetyl-group-transfer potential be-
cause transfer of the acetyl group is exergonic. Acetyl CoA carries an activated 
acetyl group, just as ATP carries an activated phosphoryl group.

Additional features of activated carriers are responsible for two key aspects of 
metabolism. First, NADH, NADPH, and FADH2 react slowly with O2 in the  absence 
of a catalyst. Likewise, ATP and acetyl CoA are hydrolyzed slowly (in times of many 
hours or even days) in the absence of a catalyst. These molecules are kinetically 
quite stable in the face of a large thermodynamic driving force for reaction with O2 
(in regard to the electron carriers) and H2O (for ATP and acetyl CoA). The kinetic 
stability of these molecules in the absence of specific catalysts is essential for their 
 biological function because it enables enzymes to control the flow of free energy and 
reducing power.

Second, most interchanges of activated groups in metabolism are accomplished 
by a rather small set of carriers (Table 15.2). The existence of a recurring set of 
activated carriers in all organisms is one of the unifying motifs of biochemistry.

R

H2
C

H2
C

C

O

R9
R C

H2

R9
+ +4 H+ + 4 e– H2O

is reduced to a methylene group in several steps. This  sequence of reactions 
requires an input of four electrons:
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12.5 A Major role of Membrane Proteins Is to Function as Transporters 215
 cotransporters. These proteins can be classified as either anti-
porters or symporters. Antiporters couple the downhill flow 
of one species to the uphill flow of another in the opposite 
direction across the membrane; symporters use the flow of 
one species to drive the flow of a different species in the same 
direction across the membrane (Figure 12.18).

Glucose is moved into some animal cells by the sodium-
glucose linked transporter (SGLT), a symporter powered by 
the simultaneous entry of Na+. This free-energy input of 
Na+ flowing down its concentration gradient is sufficient to 
generate a 66-fold concentration gradient of an uncharged 
molecule such as glucose (Figure 12.19). Recall that the so-
dium ion gradient was initially generated by the Na+–K+ 
ATPase, demonstrating that the action of the secondary ac-
tive transporter depends on the primary active transporter.

Figure 12.18 Antiporters and symporters. Secondary transporters 
can transport two substrates in opposite directions (antiporters) or two 
substrates in the same direction (symporters).

Antiporter

A

B

Symporter

A B

ATP + H2O ADP + Pi

Na+–K+ ATPase

Na+
Na+

Na+
Na+

Na+
Na+ Na+

Na+ Na+ Na+

K+
K+

K+

K+

K+
K+

K+

K+

K+

K+

K+
K+

Na+ Na+

Na+
Na+

Na+

Na+

Na+

Na+

2 K+

3 Na+

Na+

Na+

Na+
Glucose Na+

Glucose

Glucose
Glucose

SGLT

Figure 12.19 Secondary transport. The ion gradient set up by the Na+–K+ ATPase can be 
used to move materials into the cell, through the action of a secondary transporter such as the 
Na+–glucose linked transporter, a symporter.

Figure 12.20 Foxglove. Foxglove 
(Digitalis purpurea) is a highly poisonous 
plant due to the high concentration of potent 
cardiotonic steroids. Digitalis, one of the most 
widely used drugs, is obtained from foxglove. 
[roger hall/Shutterstock.]

CLInICAL InSIGHT
Digitalis Inhibits the na+–K+ Pump by Blocking Its Dephosphorylation
The interplay between active transport and secondary active transport is 
especially well illustrated by the action of the cardiotonic steroids. Heart 
failure can result if the muscles in the heart are not able to contract with 
sufficient strength to effectively pump blood. Certain steroids derived from 
plants, such as digitalis and ouabain, are known as cardiotonic steroids because 
of their ability to strengthen heart contractions. Interestingly, cardiotonic 
steroids exert their effect by inhibiting the Na+–K+ pump.

Digitalis is a mixture of cardiotonic steroids derived from the dried leaf of 
the foxglove plant Digitalis purpurea (Figure 12.20). Te compound increases 
the force of contraction of heart muscle and is consequently a choice drug 
in the treatment of congestive heart failure. Inhibition of the Na+–K+ pump 
by digitalis means that Na+ is not pumped out of the cell, diminishing the 
Na+ gradient. Te reduced Na+ gradient in turn afects the sodium–calcium 
exchanger. Tis exchanger, an example of secondary active transport, relies on 
Na+ infux to simultaneously power the expulsion of Ca+ from the cell. Te 
diminished Na+ gradient results in slower extrusion of Ca2+ by the sodium–
calcium exchanger. Te subsequent increase in the intracellular level of Ca2+ 
enhances the ability of cardiac muscle to contract.

Interestingly, digitalis was used effectively 
long before the discovery of the Na+–K+ 
ATPase. In 1785, William Withering, a 
British physician, heard tales of an elderly 
woman, known as “the old woman of 
Shropshire,” who cured people of “dropsy” 
(which today would be recognized as 
congestive heart failure) with an extract of 
foxglove. Withering conducted the first 
scientific study of the effects of foxglove 
on congestive heart failure and 
documented its effectiveness.

DiD You Know?
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derived from the vitamin niacin, a dietary requirement for human beings. Con-
sequently, NAD+ must be regenerated for glycolysis to proceed. Thus, the final 
process in the pathway is the regeneration of NAD+ through the metabolism of 
pyruvate.

Fermentations Are a Means of Oxidizing NADH
The sequence of reactions from glucose to pyruvate is similar in most organisms 
and most types of cells. In contrast, the fate of pyruvate is variable. Three reac-
tions of pyruvate are of primary importance: conversion into ethanol, lactate, or 
carbon dioxide and water (Figure 16.4). The first two reactions are fermenta-
tions that take place in the absence of oxygen. Fermentations are ATP-generating 
processes in which organic compounds act as both donors and acceptors of elec-
trons. In the presence of oxygen, the most common situation in multicellular 
 organisms and for many unicellular ones, pyruvate is metabolized to carbon 
 dioxide and water through the citric acid cycle and the electron-transport chain 
(Sections 8 and 9). In these circumstances, oxygen accepts electrons and protons 
to form water. We now take a closer look at these three possible fates of pyruvate.

nuTriTion FACTS

CO2 CO2

NADH

NAD+

NADH

NAD+

Further

Pyruvate

LactateAcetaldehyde

Ethanol

Acetyl CoAFigure 16.4 Diverse fates of pyruvate.
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consequently cannot alter the equilibrium of a chemical reaction. Consider an 
enzyme-catalyzed reaction, the conversion of substrate, S, into product, P. 
 Figure 6.2 graphs the rate of product formation with time in the presence 
and absence of enzyme. Note that the amount of product formed is the same 
whether or not the enzyme is present, but, in the present example, the amount 
of product formed in seconds when the enzyme is present might take hours 
or centuries to form if the enzyme were absent (Table 6.1).

Why does the rate of product formation level off with time? The reaction 
has reached equilibrium. Substrate S is still being converted into product P, 
but P is being converted into S at a rate such that the amount of P remains 
constant.  Enzymes accelerate the attainment of equilibria but do not shift their 
positions. The equilibrium position is a function only of the free-energy differ-
ence between reactants and products.

6.4 Enzymes Facilitate the Formation of the Transition 
State

The free-energy difference between reactants and products accounts for the 
 equilibrium of a reaction, but enzymes accelerate how quickly this equilibrium is 
attained. How can we explain the rate enhancement in terms of thermodynam-
ics? To do so, we have to consider not the end points of the reaction but the 
chemical pathway between the end points.

A chemical reaction of substrate S to form product P goes through a  transition 
state X‡ that has a higher free energy than does either S or P. The double dagger 
denotes the transition state. The transition state is a fleeting molecular structure 
that is no longer the substrate but is not yet the product. The transition state is the 
least-stable and most-seldom-occurring species along the reaction pathway 
 because it is the one with the highest free energy.

S m X‡ → P

The difference in free energy between the transition state and the substrate is 
called the free energy of activation or simply the activation energy, symbolized by 
ΔG‡ (Figure 6.3):

ΔG‡ = GX
‡ − GS

Note that the energy of activation, or ΔG‡, does not enter into the final ΔG 
 calculation for the reaction, because the energy that had to be added to reach the 
transition state is released when the transition state becomes the product. The 
activation energy immediately suggests how enzymes accelerate the reaction rate 
without altering ΔG of the reaction: enzymes function to lower the activation 
energy. In other words, enzymes facilitate the formation of the transition state.

The combination of substrate and enzyme creates a reaction pathway whose 
transition-state energy is lower than what it would be without the enzyme 
( Figure  6.3). Because the activation energy is lower, more molecules have the 
energy required to reach the transition state and more product will be formed 
faster. Decreasing the activation barrier is analogous to lowering the height of a 
high-jump bar; more athletes will be able to clear the bar. The essence of catalysis 
is stabilization of the transition state.

The Formation of an Enzyme–Substrate Complex Is the First Step 
in Enzymatic Catalysis
Much of the catalytic power of enzymes comes from their binding to and then 
altering the structure of the substrate to promote the formation of the transition 
state. Thus, the first step in catalysis is the formation of an enzyme–substrate (ES) 

✓ 2 Explain the relation between the 
transition state and the active site of 
an enzyme, and list the characteristics 
of active sites.

No enzyme

+ Enzyme

HoursSeconds

Time

Pr
od

uc
t

Figure 6.2 Enzymes accelerate the reaction 
rate. the same equilibrium point is reached but 
much more quickly in the presence of an enzyme.

Reaction progress
Fr

ee
 e

ne
rg

y

Transition state, X‡

Substrate

∆G
for the

reaction

∆G‡ (uncatalyzed)

∆G‡ (catalyzed)

Product

Figure 6.3 Enzymes decrease the 
activation energy. enzymes accelerate 
reactions by decreasing ΔG‡, the free energy 
of activation.

Tymoczko_c06_095-110hr_pv2.0.1.indd   103 12/30/14   1:39 PM

• Learning Objectives are used in many different ways in the classroom. To help 
reinforce key concepts while the student is reading the chapter we have indicated 
them with a ✓ and number and integrated them on a chapter level as well as in the 
section introductions. They are also tied to the end-of-chapter problems to assist 
students in developing problem-solving skills and instructors in assessing students’ 
understanding of some of the key concepts in each chapter.
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Media and Supplements
All of the new media resources for Biochemistry: A Short Course are available in 
our new  system.

www.macmillanhighered.com/launchpad/tymoczko3e

LaunchPad is a dynamic, fully integrated learning environment that brings 
together all of our teaching and learning resources in one place. It includes 
easy-to-use, powerful assessment tracking and grading tools, a personalized 
calendar, an announcement center, and communication tools to help you man-
age your course. This learning system also contains the fully interactive e-Book 
and other newly updated resources for students and instructors, including the 
following:

For Students

• Case Studies are a series of online biochemistry case studies that are 
assignable and assessable. Authored by Justin Hines, Assistant Professor of 
Chemistry at Lafayette College, each case study gives students practice in 
working with data, developing critical thinking skills, connecting topics, and 
applying knowledge to real scenarios.

• e-Book allows students to read the online version of the textbook, which 
combines the contents of the printed book, electronic study tools, and a full 
complement of student media specifically created to support the text.

• Hundreds of Self-Graded Practice Problems allow students to test their 
understanding of concepts explained in the text, with immediate feedback.

• Metabolic Map helps students understand the principles and applications of 
the core metabolic pathways. Students can work through guided tutorials with 
embedded assessment questions, or explore the Metabolic Map on their own 
using the dragging and zooming functionality of the map.

• Problem-Solving Videos, created by Scott Ensign of Utah State University, 
provide 24/7 online problem-solving help to students. Through a two-part 
approach, each 10-minute video covers a key textbook problem representing a 
topic that students traditionally struggle to master. Dr. Ensign first describes a 
proven problem-solving strategy and then applies the strategy to the problem 
at hand in clear, concise steps. Students can easily pause, rewind, and review 
any steps they wish until they firmly grasp not just the solution but also the 
reasoning behind it. Working through the problems in this way is designed to 
make students better and more confident at applying key strategies as they solve 
other textbook and exam problems.

•  Living Figures allow students to view textbook illustrations of protein 
structures online in interactive 3-D using Jmol. Students can zoom and rotate 54 
“live” structures to get a better understanding of their three-dimensional nature 
and can experiment with different display styles (space-filling, ball-and-stick, 
ribbon, backbone) by means of a user-friendly interface.

• Self-Assessment Tool allows students to test their understanding by taking 
an online multiple-choice quiz provided for each chapter, as well as a general 
chemistry review.

• Animated Techniques illustrate laboratory techniques described in the  
text.

http://www.macmillanhighered.com/launchpad/tymoczko3e
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• Learning Curve is a self-assessment tool that helps 
students evaluate their progress. Students can test their 
understanding by taking an online multiple-choice quiz 
provided for each chapter, as well as a general chemistry 
review.

For Instructors
All the features listed above for students plus:

• e-Book Instructors teaching from the e-Book can assign 
either the entire textbook or a custom version that includes 
only the chapters that correspond to their syllabi. They can 
choose to add notes to any page of the e-Book and share 
these notes with their students. These notes may include 
text, animations, or photographs.

• Clicker Questions are aligned with key concepts and misconceptions in 
each chapter so instructors can assess student understanding in real time during 
lectures.

• Newly Updated Lecture PowerPoint Files have been developed to 
minimize preparation time for new users of the book. These files offer suggested 
lectures including key illustrations and summaries that instructors can adapt to 
their teaching styles.

• Updated Textbook Images and Tables are offered as high-resolution JPEG 
files. The JPEGs are also offered in separate PowerPoint files. 

• Test Bank, by Harvey Nikkel of Grand Valley State University, Susan Knock 
of Texas A&M University at Galveston, and Joseph Provost of Minnesota State 
University Moorhead, offers more than 1500 questions in editable Word format.

Student Companion 
(1-319-03295-8)
For each chapter of the textbook, the Student Companion includes:

• Chapter Learning Objectives and Summary

• Self-Assessment Problems, including multiple-choice, short-answer, 
matching questions, and challenge problems, and their answers

• Expanded Solutions to the end-of-chapter problems in the textbook
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CLINICAL INSIGHTS This icon signals the beginning of a Clinical Insight in the text.
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T he ultimate goal of all scientific endeavors is to develop a deeper, richer 

understanding of ourselves and the world in which we live. Biochemistry 

has had and will continue to have an extensive role in helping us to develop 

this understanding. Biochemistry, the study of living organisms at the molecular 

level, has shown us many of the details of the most fundamental processes of 

life. For instance, biochemistry has shown us how information flows from genes 

to molecules that have functional capabilities. In recent years, biochemistry has 

also unraveled some of the mysteries of the molecular generators that provide 

the energy that powers living organisms. The realization that we can understand 

such essential life processes has significant philosophical implications. What 

does it mean, biochemically, to be human? What are the biochemical differences 

between a human being, a chimpanzee, a mouse, and a fruit fly? Are we more 

similar than we are different?

The understanding achieved through biochemistry is greatly influencing 

medicine and other fields. Although we may not be accustomed to thinking of illness 

in relation to molecules, illness is ultimately some sort of malfunction at the molecular 

level. The molecular lesions causing sickle-cell anemia, cystic fibrosis, hemophilia, 

and many other genetic diseases have been elucidated at the biochemical level. 

Biochemistry is also contributing richly to clinical diagnostics. For example, elevated 

levels of heart enzymes in the blood reveal whether a patient has recently had a 

myocardial infarction (heart attack). Agriculture, too, is employing biochemistry 

to develop more effective, environmentally safer herbicides and pesticides and to 

create genetically engineered plants that are, for example, more resistant to insects.

Biochemistry Helps Us to 
Understand Our World

ChApTer 1
Biochemistry and the  
Unity of Life

ChApTer 2
Water, Weak Bonds, and 
the Generation of Order 
Out of Chaos
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In this section, we will learn some of the key concepts that structure the 

study of biochemistry. We begin with an introduction to the molecules of 

biochemistry, followed by an overview of the fundamental unit of biochemistry 

and life itself—the cell. Finally, we examine the weak reversible bonds that 

enable the formation of biological structures and permit the interplay between 

molecules that makes life possible.

2

✓ By the end of this section, you should be able to:

✓ 1  Describe the key classes of biomolecules and differentiate between 
them.

✓ 2 List the steps of the central dogma.

✓ 3  Identify the key features that differentiate eukaryotic cells from 
prokaryotic cells.

✓ 4  Describe the chemical properties of water and explain how water 
affects biochemical interactions.

✓ 5  Describe the types of noncovalent, reversible interactions and explain 
why reversible interactions are important in biochemistry.

✓ 6  Define pH and explain why changes in pH may affect biochemical 
systems.



A key goal of biochemistry, one that has been met with striking success, is to 
understand what it means to be alive at the molecular level. Another goal 
is to extend this understanding to the organismic level—that is, to under-

stand the effects of molecular manipulations on the life that an organism leads. For 
instance, understanding how the hormone insulin works at the molecular level 
illuminates how the organism controls the levels of common fuels—glucose and 
fats—in its blood. Often, such understanding facilitates an understanding of dis-
ease states, such as diabetes, which results when insulin signaling goes awry. In 
turn, this knowledge can be a source of insight into how the disease can be treated.

Biochemistry has been an active area of research for more than a century. 
Much knowledge has been gained about how a variety of organisms manipulate 
energy and information. However, one of the most exciting outcomes of bio-
chemical research has been the realization that all organisms have much in com-
mon biochemically. Organisms are remarkably uniform at the molecular level. 
This observation is frequently referred to as the unity of biochemistry, but, in real-
ity, it illustrates the unity of life. French biochemist Jacques Monod encapsulated 
this idea in 1954 with the phrase “Anything found to be true of [the bacterium]  
E. coli must also be true of elephants.” This uniformity reveals that all organisms on 
Earth have arisen from a common ancestor. A core of essential biochemical 
 processes, common to all organisms, appeared early in the evolution of life. The 

3

Despite their vast differences in mass—the African elephant has a mass 3 × 1018 times as 
great as that of the bacterium E. coli—and complexity, the biochemical workings of these 
two organisms are remarkably similar. [E. coli: eye of Science/Science Source. elephant: John 
Michael evan potter/Shutterstock.]

1.1  Living Systems Require a Limited 
Variety of Atoms and Molecules

1.2  There Are Four Major Classes of 
Biomolecules

1.3  The Central Dogma Describes 
the Basic Principles of Biological 
Information Transfer

1.4  Membranes Define the Cell and 
Carry Out Cellular Functions

C h A p T e r  1

Biochemistry and the 
Unity of Life



4  1 Biochemistry and the Unity of Life

diversity of life in the modern world has been generated by  evolutionary pro-
cesses acting on these core processes through millions or even billions of years.

We begin our study of biochemistry by looking at commonalities. We will 
examine the molecules and molecular constituents that are used by all life forms 
and will then consider the rules that govern how biochemical information is ac-
cessed and how it is passed from one generation to the next. Finally, we will take 
an overview of the fundamental unit of life—the cell. This is just the beginning. 
All of the molecules and structures that we see in this chapter we will meet again 
and again as we explore the chemical basis of life.

1.1 Living Systems Require a Limited Variety of  
Atoms and Molecules

Ninety naturally occurring elements have been identified, yet only three— 
oxygen, hydrogen, and carbon—make up 98% of the atoms in an organism. 
Moreover, the abundance of these three elements in life is vastly different from 
their abundance in Earth’s crust (Table 1.1). What can account for the disparity 
between what is available and what organisms are made of?

One reason that oxygen and hydrogen are so common is the ubiquity of 
 water, or “the matrix of life,” as biochemist Albert Szent-Györgi called it. This tiny 
molecule—consisting of only three atoms—makes life on Earth possible. Indeed, 
current belief is that all life requires water, which is why so much effort has been 
made in recent decades to determine whether Mars had water in the past and 
whether it still does. The importance of water for life is so crucial that its presence 
is tantamount to saying that life could be present. We will consider the properties 
of water and how these properties facilitate biochemistry in Chapter 2.

After oxygen and hydrogen, the next most-common element in living 
 organisms is carbon. Most large molecules in living systems are made up 
 predominantly of carbon. Fuel molecules are made entirely of carbon, hydrogen, 

Table 1.1  Chemical compositions as percentage of total number of atoms

Composition in
Element Human beings (%) Seawater (%) Earth’s crust (%)

Hydrogen 63 66 0.22
Oxygen 25.5 33 47
Carbon 9.5 0.0014 0.19
Nitrogen 1.4 <0.1 <0.1
Calcium 0.31 0.006 3.5
Phosphorus 0.22 <0.1 <0.1
Chloride 0.03 0.33 <0.1
Potassium 0.06 0.006 2.5
Sulfur 0.05 0.017 <0.1
Sodium 0.03 0.28 2.5
Magnesium 0.01 0.003 2.2
Silicon <0.1 <0.1 28
Aluminum <0.1 <0.1 7.9
Iron <0.1 <0.1 4.5
Titanium <0.1 <0.1 0.46
All others <0.1 <0.1 <0.1

Note: Because of rounding, total percentages do not equal 100%.
Source: Data from E. Frieden, The chemical elements of life, Sci. Am. 227(1), 1972, p. 54.
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and oxygen. Biological fuels, like the fuels that power machinery, react with oxy-
gen to produce carbon dioxide and water. In regard to biological fuels, this reac-
tion, called combustion, provides the energy to power the cell. As a means of 
seeing why carbon is uniquely suited for life, let us compare it with silicon, its 
nearest elemental relative. Silicon is much more plentiful than carbon in Earth’s 
crust (Table 1.1), and, like carbon, can form four covalent bonds—a property 
crucial to the construction of large molecules. However, carbon-to-carbon bonds 
are stronger than silicon-to-silicon bonds. This difference in bond strength has 
two important consequences. First, large molecules can be built with the use of 
carbon–carbon bonds as the backbone because of the stability of these bonds. 
Second, more energy is released when carbon–carbon bonds undergo combus-
tion than when silicon reacts with oxygen. Thus, carbon-based molecules are 
stronger construction materials and are better fuels than silicon-based molecules. 
Carbon even has an advantage over silicon after it has undergone combustion. 
Carbon dioxide is readily soluble in water and can exist as a gas; thus, it remains 
in biochemical circulation, given off by one tissue or organism to be used by an-
other tissue or organism. In contrast, silicon is essentially insoluble after reaction 
with oxygen. After it has combined with oxygen, it is permanently out of circula-
tion. Quartz is a common form of silicon dioxide.

Other elements have essential roles in living systems—notably, nitrogen, 
phosphorus, and sulfur. Moreover, some of the trace elements, although present 
in tiny amounts compared with oxygen, hydrogen, and carbon, are absolutely 
vital to a number of life processes. We will see specific uses of these elements as 
we proceed with our study of biochemistry.

1.2 There Are Four Major Classes of Biomolecules
Living systems contain a dizzying array of biomolecules. However, these biomol-
ecules can be divided into just four classes: proteins, nucleic acids, lipids, and 
carbohydrates.

Proteins Are Highly Versatile Biomolecules
Much of our study of biochemistry will revolve around proteins. Proteins are con-
structed from 20 building blocks, called amino acids, linked by peptide bonds to 
form long unbranched polymers (Figure 1.1). These polymers fold into precise 
three-dimensional structures that facilitate a vast array of biochemical functions. 
Proteins serve as signal molecules (e.g., the hormone insulin signals that fuel is in 
the blood) and as receptors for signal molecules. Receptors convey to the cell that 
a signal has been received and initiates the cellular response. Thus, for example, 
insulin binds to its particular receptor, called the insulin receptor, and initiates 
the biological response to the presence of fuel in the blood. Proteins also play 
structural roles, allow mobility, and provide defenses against environmental 

✓ 1 Describe the key classes of 
biomolecules and differentiate 
between them.

1 2 3

Amino acid sequence ProteinAmino acids

Figure 1.1 Protein folding. The three-dimensional structure of a protein is dictated by the  
sequence of amino acids that constitute the protein.
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 dangers. Perhaps the most prominent role of proteins is that 
of catalysts—agents that enhance the rate of a chemical reac-
tion without being permanently affected themselves. Protein 
catalysts are called enzymes. Every process that takes place in 
living systems depends on enzymes.

Nucleic Acids Are the Information Molecules of the Cell
As information keepers of the cell, the primary function of nu-
cleic acids is to store and transfer information. They contain the 
instructions for all cellular functions and interactions. Like 

proteins, nucleic acids are linear molecules. However, nucleic acids are constructed 
from only four building blocks called nucleotides. A nucleotide is made up of a five-
carbon sugar, either a deoxyribose or a ribose, attached to a heterocyclic ring struc-
ture called a base and at least one phosphoryl group (Figure 1.2).

There are two types of nucleic acid: deoxyribonucleic acid (DNA) and ribo-
nucleic acid (RNA). Genetic information is stored in DNA—the “parts list” that 
determines the nature of an organism. DNA is constructed from four deoxyri-
bonucleotides, differing from one another only in the ring structure of the 
 bases—adenine (A), cytosine (C), guanine (G), and thymine (T). The  information 
content of DNA is the sequence of nucleotides linked together by phosphodies-
ter linkages. DNA in all higher organisms exists as a double-stranded helix 
(Figure 1.3). In the double helix, the bases interact with one another—A with 
T and C with G.
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Figure 1.2 The structure of a 
nucleotide. A nucleotide (in this case, 
adenosine triphosphate) consists of a base 
(shown in blue), a five-carbon sugar (black), 
and at least one phosphoryl group (red).

RNA is a single-stranded form of nucleic acid. Some regions of DNA are 
copied as a special class of RNA molecules called messenger RNA (mRNA). 
mRNA is a template for the synthesis of proteins. Unlike DNA, mRNA is fre-
quently broken down after use. RNA is similar to DNA in composition with two 
exceptions: the base thymine (T) is replaced by the base uracil (U), and the sugar 
component of the ribonucleotides contains an additional hydroxyl (—OH) group.

Lipids Are a Storage Form of Fuel and Serve as a Barrier
Among the key biomolecules, lipids are much smaller than proteins or nucleic 
acids. Whereas proteins and nucleic acids can have molecular weights of thou-
sands to millions, a typical lipid has a molecular weight of 1300 g mol−1. More-
over, lipids are not polymers made of repeating units, as are proteins and nucleic 
acids. A key characteristic of many biochemically important lipids is their dual 
chemical nature: part of the molecule is hydrophilic, meaning that it can dissolve 
in water, whereas the other part, made up of one or more hydrocarbon chains, is 
hydrophobic and cannot dissolve in water (Figure 1.4). This dual nature allows 
lipids to form barriers that delineate the cell from its environment and to estab-
lish intracellular compartments. In other words, lipids allow the development of 
“inside” and “outside” at a biochemical level. The hydrocarbon chains cannot in-
teract with water and, instead, interact with those of other lipids to form a barrier, 
or membrane, whereas the water-soluble components interact with the aqueous 
environment on either side of the membrane. Lipids are also an important stor-
age form of energy. As we will see, the hydrophobic component of lipids can un-
dergo combustion to provide large amounts of cellular energy. Lipids are crucial 
signal molecules as well.

Figure 1.3  The double helix. Two 
individual chains of DNA interact to form a 
double helix. The sugar–phosphate backbone 
of one of the two chains is shown in red; the 
other is shown in blue. The bases are shown 
in green, purple, orange, and yellow.
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Carbohydrates Are Fuels and Informational Molecules
Most of us already know that carbohydrates are an important fuel source for most 
living creatures. The most-common carbohydrate fuel is the simple sugar glu-
cose. Glucose is stored in animals as glycogen, which consists of many glucose 
molecules linked end-to-end and has occasional branches (Figure 1.5). In plants, 
the storage form of glucose is starch, which is similar to glycogen in molecular 
composition.

There are thousands of different carbohydrates. They can be linked together 
in chains, and these chains can be highly branched, much more so than in glyco-
gen or starch. Such chains of carbohydrates play important roles in helping cells 
to recognize one another. Many of the components of the cell exterior are deco-
rated with various carbohydrates that can be identified by other cells and serve as 
sites of cell-to-cell interactions.

Hydrophobic tail
Hydrophilic head

Space-filling model Shorthand depiction

(A) (B)

Figure 1.4  The dual properties of lipids. (A) One part of a lipid molecule is hydrophilic; the 
other part is hydrophobic. (B) In water, lipids can form a bilayer, constituting a barrier that 
separates two aqueous compartments.

QUICk QUIz 1 Name the four 
classes of biomolecules, and state an 

important function of each class.
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G Figure 1.5 The structure of glycogen. 
Glycogen is a branched polymer composed 
of glucose molecules. The protein identified 
by the letter G at the center of the glycogen 
molecule is required for glycogen synthesis 
(Chapter 25).

1.3 The Central Dogma Describes the Basic Principles of 
Biological Information Transfer

Information processing in all cells is quite complex. It increases in complexity as 
cells become parts of tissues and as tissues become components of organisms. 
The scheme that underlies information processing at the level of gene expression 
was first proposed by Francis Crick in 1958.

✓ 2 List the steps of the central 
dogma.

Crick called this scheme the central dogma: information flows from DNA to RNA 
and then to protein. Moreover, DNA can be replicated. The basic tenets of this 
dogma are true, but, as we will see later, this scheme is not as simple as  depicted.
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DNA constitutes the heritable information—the genome. This information is 
packaged into discrete units called genes. It is this collection of genes that deter-
mines the physical nature of the organism. When a cell duplicates, DNA is copied 
and identical genomes are then present in the newly formed daughter cells. The 
process of copying the genome is called replication. A group of enzymes, collec-
tively called DNA polymerase, catalyze the replication process (Figure 1.6).

Genes are useless in and of themselves. The information must be rendered 
accessible. This accessibility is achieved in the process of transcription through 
which one form of nucleic acid, DNA, is transcribed into another form, RNA. 
The enzyme RNA polymerase catalyzes this process (Figure 1.7). Which genes 
are transcribed, as well as when and where they are transcribed, is crucial to the 
fate of the cell. For instance, although each cell in a human body has the DNA 
information that encodes the instructions to make all tissues, this information is 
parceled out. The genes expressed in the liver are different from those expressed 
in the muscles and brain. Indeed, it is this selective expression that defines the 
function of a cell or tissue.

A key aspect of the selective expression of genetic information is the tran-
scription of genes into mRNA. The information encoded in mRNA is realized in 
the process of translation because information is literally translated from one 
chemical form (nucleic acid) into another (protein). Proteins have been described 
as the workhorses of the cell, and translation renders the genetic information into 
a functional form. Translation takes place on large macromolecular complexes 
called ribosomes, consisting of RNA and protein (Figure 1.8).

Now that you have been introduced to the key biomolecules and have briefly 
examined the central dogma of information transfer, let us look at the platform—
the cell—that contains and coordinates the biochemistry required for life.
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Figure 1.6  DNA replication. When the 
two strands of a DNA molecule are 
separated, each strand can serve as a 
template for the synthesis of a new partner 
strand. DNA polymerase catalyzes replication.
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Figure 1.7 The transcription of RNA. Transcription, catalyzed 
by rNA polymerase, makes an rNA copy of one of the strands of 
DNA.

Figure 1.8 Translation takes place on ribosomes.  
A ribosome decodes the information in mrNA and translates it 
into the amino acid sequence of a protein.

AA4

AA3

AA2

AA1

mRNA

New polypeptide chain

Ribosome

1.4 Membranes Define the Cell and Carry  
Out Cellular Functions

The cell is the basic unit of life. Cells grow, replicate, and interact with their envi-
ronment. Living organisms can be as simple as a single cell or as complex as a 
human body, which is composed of approximately 100 trillion cells. Every cell is 
delineated by a membrane that separates the inside of the cell from its environ-
ment. A membrane is a lipid bilayer: two layers of lipids organized with their hy-
drophobic chains interacting with one another and the hydrophilic head groups 

✓ 3 Identify the key features that 
differentiate eukaryotic cells from 
prokaryotic cells.

As defined in the Oxford english 
Dictionary, to transcribe means to make a 
copy of (something) in writing; to copy 
out from an original; to write (a copy).

DiD You Know?
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interacting with the environment (Figure 1.9).
There are two basic types of cells: eukaryotic cells and prokaryotic cells 

 (Figure 1.10). The main difference between the two is the existence of 
 membrane-enclosed compartments in eukaryotes and the absence of such 
 compartments in prokaryotes. Prokaryotic cells, exemplified by the human gut 

Membrane bilayer

Exterior

(A) (B)

Hydrophilic head

Hydrophilic head

Hydrophobic
tails

Cytoplasm

Figure 1.9 The bilayer structure of a 
membrane. (A) Membranes are composed 
of two layers or sheets. (B) The hydrophobic 
parts of the layers interact with each other, 
and the hydrophilic parts interact with the 
environment. [J. D. robertson. “Discovery in 
Cell Biology: Membrane Structure.” Journal of 
Cell Biology 91(1981): 189s–204s. Courtesy of 
J.D. robertson.]
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Figure 1.10 Prokaryotic and eukaryotic cells. eukaryotic cells display more internal structure than do 
prokaryotic cells. Components within the interior of a eukaryotic cell, most notably the nucleus, are defined by 
membranes. [Micrographs: (A) ©Biology pics/Science Source; (B) from p. C. Cross and K. L. Mercer, Cell Tissue 
Ultrastructure: A Functional Perspective (W. h. Freeman and Company, 1993), p. 199. Diagrams: (A and B) 
Information from h. Lodish et al., Molecular Cell Biology, 6th ed. (W. h. Freeman and Company, 2008), p. 3.]




