BIOCHEMISTRY A Short Course

THIRD EDITION

JOHN L. TYMOCZKO JEREMY M. BERG LUBERT STRYER

Biochemistry

A Short Course

Third Edition

John L. Tymoczko Jeremy M. Berg Lubert Stryer

A Macmillan Education Imprint

Publisher:	Kate Ahr Parker
Director of Marketing:	Sandy Lindelof
Senior Acquisitions Editor:	Lauren Schultz
Developmental Editor:	Heidi Bamatter
Media and Supplements Editors:	Amanda Dunning, Heidi Bamatter
Editorial Assistant:	Nandini Ahuja
Marketing Assistant:	Bailey James
Photo Editor:	Christine Buese
Photo Researcher:	Jacquelyn Wong
Cover and Interior Designer:	Vicki Tomaselli
Senior Project Editor:	Elizabeth Geller
Manuscript Editor:	Teresa Wilson
Illustrations:	Jeremy Berg, Gregory Gatto, Adam Steinberg, and Network Graphics
Illustration Coordinator:	Janice Donnola
Production Manager:	Paul Rohloff
Composition:	codeMantra
Printing and Binding:	Quad/Graphics
Cover Photo:	Fabio Ferrari/LaPresse/Icon Sportswire

Library of Congress Control Number: 2015934516

ISBN-10: 1-4641-2613-5 ISBN-13: 978-1-4641-2613-0

©2015, 2013, 2010 by W. H. Freeman and Company

Printed in the United States of America First printing

W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 www.whfreeman.com

To our teachers and students

About the Authors

John L. Tymoczko is Towsley Professor of Biology at Carleton College, where he has taught since 1976. He currently teaches Biochemistry, Biochemistry Laboratory, Oncogenes and the Molecular Biology of Cancer, and Exercise Biochemistry and co-teaches an introductory course, Energy Flow in Biological Systems. Professor Tymoczko received his B.A. from the University of Chicago in 1970 and his Ph.D. in Biochemistry from the University of Chicago with Shutsung Liao at the Ben May Institute for Cancer Research. He then had a postdoctoral position with Hewson Swift of the Department of Biology at the University of Chicago. The focus of his research has been on steroid receptors, ribonucleoprotein particles, and proteolytic processing enzymes.

Jeremy M. Berg received his B.S. and M.S degrees in Chemistry from Stanford (where he did research with Keith Hodgson and Lubert Stryer) and his Ph.D. in Chemistry from Harvard with Richard Holm. He then completed a postdoctoral fellowship with Carl Pabo in Biophysics at Johns Hopkins University School of Medicine. He was an Assistant Professor in the Department of Chemistry at Johns Hopkins from 1986 to 1990. He then moved to Johns Hopkins University School of Medicine as Professor and Director of the Department of Biophysics and Biophysical Chemistry, where he remained until 2003. From 2003 to 2011, he served as Director of the National Institute of General Medical Sciences at the National Institutes of Health. In 2011, he moved to the University of Pittsburgh, where he is now Professor of Computational and Systems Biology and Pittsburgh Foundation Professor and Director of the Institute for Personalized Medicine. He served as President of the American Society for Biochemistry and Molecular

Biology from 2011 to 2013. He is a Fellow of the American Association for the Advancement of Science and a member of the Institute of Medicine of the National Academy of Sciences. He is a recipient of the American Chemical Society Award in Pure Chemistry (1994), the Eli Lilly Award for Fundamental Research in Biological Chemistry (1995), the Harrison Howe Award (1997), and the Howard Schachman Public Service Award (2011), was named Maryland Outstanding Young Scientist of the Year (1995), and received public service awards from the Biophysical Society, the American Society for Biochemistry and Molecular Biology, the American Chemical Society, and the American Society for Cell Biology. He also received numerous teaching awards, including the W. Barry Wood Teaching Award (selected by medical students), the Graduate Student Teaching Award, and the Professor's Teaching Award for the Preclinical Sciences. He is coauthor, with Stephen J. Lippard, of the textbook Principles of Bioinorganic Chemistry.

Lubert Stryer is Winzer Professor of Cell Biology, Emeritus, in the School of Medicine and Professor of Neurobiology, Emeritus, at Stanford University, where he has been on the faculty since 1976. He received his M.D. from Harvard Medical School. Professor Stryer has received many awards for his research on the interplay of light and life, including the Eli Lilly Award for Fundamental Research in Biological Chemistry, the Distinguished Inventors Award of the Intellectual Property Owners' Association, and election to the National Academy of Sciences and the American Philosophical Society. He was awarded the National Medal of Science in 2006. The publication of his first edition of *Biochemistry* in 1975 transformed the teaching of biochemistry.

Preface

s humans, we are adept learning machines. Long before a baby learns that she can change a sheet of paper by crumpling it, she is absorbing vast amounts of information. This learning continues throughout life in myriad ways: learning to ride a bike and to take social cues from friends; learning to drive a car and balance a checkbook; learning to solve a quadratic equation and to interpret a work of art.

Of course, much of learning is necessary for survival, and even the simplest organisms learn to avoid danger and recognize food. However, humans are especially gifted in that we also acquire skills and knowledge to make our lives richer and more meaningful. Many students would agree that reading novels and watching movies enhance the quality of our lives because we can expand our horizons by vicariously being in situations we would never experience, reacting sympathetically or unsympathetically to characters who remind us of ourselves or are very different from anyone we have ever known. Strangely, at least to us as science professors, science courses are rarely thought of as being enriching or insightful into the human condition. Larry Gould, a former president of Carleton College, was also a geologist and an Arctic explorer. As a scientist, teacher, and administrator, he was very interested in science education especially as it related to other disciplines. In his inaugural address when he became president he said, "Science is a part of the same whole as philosophy and the other fields of learning. They are not mutually exclusive disciplines but they are independent and overlapping." Our goal was to write a book that encourages students to appreciate biochemistry in this broader sense, as a way to enrich their understanding of the world.

New to this Edition

This third edition takes into account recent discoveries and advances that have changed how we think about the fundamental concepts in biochemistry and human health. To meet the needs of instructors and students alike, particular attention has been paid to the topics outlined below.

Expanded Physiological Focus

A hallmark feature of *Biochemistry: A Short Course* is its physiological perspective on biochemical processes and its integration of clinical examples to apply and reinforce concepts. In the third edition, we build on this aspect of the book with:

• A **NEW** section: "Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease" (Chapter 9)

• 17 new Clinical Insights, demonstrating the relevance of biochemistry to human health and disease.

Features highlighting the physiological aspect of biochemistry have been expanded, and include the following:

CLINICAL INSIGHT

Premature Aging Can Result from the Improper Att of a Hydrophobic Group to a Protein Farneyl is a hydrophobic group that is often attached to proteins, usually so that the protein is able to associate with a membrane (Figure 11:10). Inappropriate farneyslation has been shown to result in Hutchinson-Gilford progerts anyndrom (HGPS), a rare disease of premature aging. Early postnatal development is normal, but the children fail to beaked nose, a receding jaw, and a complete loss of hair (Figure 11:11). Affected children statuly die at average age of 13 years of severe atherosacherosis, a cause of HGPS appears to be a mutation in the gene for the nuclear protein *kamin*, a protein that form as acrified for the nucleas and may take part in the regulation of gene expression. The folded polypeptied that will centually become Lamin is

Figure 11.11 Hutchinson–Gillord progenia syndrome (HGPS). (A) A ES-year-old by suffering form HGPS. (B) A normal mackus; (C) A nucleus from a HGPS patient. (A) AP Photo/Gerald Herbert; (B and C) Scallid, P., Gordon, L and Mistell, T. (2005). The call nucleus and aging: Tantlalizing clues and hopeful promises. *PLoS Biol* 3 (11): 295. Contret of Pacaba Scallida).

forms a scaffold for the nucleus and may take part in the regulation of gene expression. The folded polypertule that will eventually become lamin is modified and processed many times before the mature protein is produced. One key processing event is the removal of a farmesyl group that had been added to the nascent protein earlier in processing. In HGPS patients, the farmesyl group is not tenoved, ownig to a mutation in the lamin. The incorrectly processed lamin results in a deformed nucleus (Figure 11.11) and aberrant nuclear function that results in a deformed nucleus (Figure 11.11) and aberrant nuclear function that to remove the farmesyl group leads to such dramatic consequences.

BIOLOGICAL INSIGHT

The Dead Zone: Too Much Respiration

Some marine organisms perform so much cellular respiration, and therefore consume so much molecular oxygen, that the oxygen concentration in the water is decreased to a level that is too low to sustain other organisms. One such hypoxic (low levels of oxygen) zone is in the northern Gulf of Mexico,

off the coast of Louisiana where the Mississippi River flows into the Gulf (Figure 20.16). The Mississippi is extremely nutrient rich due to agricultural runoff; so plant microorganisms, called phytoplankton, proliferate so robustly that they exceed the amount that can be consumed by other members of the food chain. When the phytoplankton die, they sink to the bottom and are consumed by aerobic bacteria. The aerobic bacteria thrive to such a degree that other bottomdwelling organisms, such as shrimp and crabs, cannot obtain enough O₂ to survive. The term "dead zone" refers to the inability of this area to support fisheries.

Figure 20.16 The Gulf of Mexico dead zone. The size of the dead zone in the Gulf of Mexico off Louisiana varies annually but may extend from the Louisiana and Alabama coasts to the westernmost coast of Texas. Reds and oranges represent high concentrations of phytoplankton and river sediment. [NASA/ Goddard Space Flight Center/Scientific Visualization Studio.]

CLINICAL INSIGHTS

In the Clinical Insights, students see how the concepts most recently considered affect an aspect of a disease or its cure. By exploring biochemical concepts in the context of a disease, students learn how these concepts are relevant to human life and what happens when biochemistry goes awry.

BIOLOGICAL INSIGHTS

Biochemistry affects every aspect of our world, sometimes in strange and amazing ways. Like Clinical Insights, Biological Insights bolster students' understanding of biochemical concepts as they learn how simple changes in biochemical processes can have dramatic effects.

For a complete list of clinical and biological insights see pages xi-xii.

NUTRITIONAL EXAMPLES

Examples of the underlying relationship between nutrition and biochemistry abound.

Increased Coverage of the Fundamentals

The third edition features a greater emphasis on the fundamentals of biochemistry, specifically where metabolism is concerned (Chapters 14 and 15). In an effort to explain metabolism more fully, we've expanded on the following areas within Chapters 14 and 15:

- Digestive enzymes
- Protein digestion
- Celiac disease
- Energy
- Phosphates in biochemical processes

Teaching and Learning Tools

In addition to providing an engaging contextual framework for the biochemistry throughout the book, we have created several opportunities for students to check their understanding, reinforce connections across the book, and practice what they have learned. These opportunities present themselves both in features throughout the text and in the many resources offered in LaunchPad.

ACTIVE LEARNING RESOURCES

In this new edition, we've responded to instructor requests to provide resources that aid in creating an active classroom environment. All of the new media resources for *Biochemistry: A Short Course* will be available in our new Cource be available in our new for more information on LaunchPad see page ix. To help students adapt to an interactive course, we've added the following resources:

NEW Case Studies are a series of online biochemistry case studies that are assignable and assessable. Authored by Justin Hines, Assistant Professor of Chemistry at Lafayette College, each case study gives students practice in working with data, developing critical thinking skills, connecting topics, and applying knowledge to real scenarios. We also provide instructional guidance with each case study (with suggestions on how to use the case in the classroom) and aligned assessment questions for quizzes and exams.

NEW Clicker Questions are aligned with key concepts and misconceptions in each chapter so instructors can assess student understanding in real time during lectures.

END-OF-CHAPTER PROBLEMS

Each chapter includes a robust set of practice problems. We have revised and added to the total number of questions in the third edition.

- **Data Interpretation Problems** train students to analyze data and reach scientific conclusions.
- Chapter Integration Problems draw connections between concepts across chapters.
- **Challenge Problems** require calculations, understanding of chemical structures, and other concepts that are challenging for most students.

Brief solutions to all the end-of-chapter problems are provided in the "Answers to Problems" section in the back of the textbook. We are also pleased to offer expanded solutions in the accompanying *Student Companion*, by Frank Deis, Nancy Counts Gerber, Richard Gumport, and Roger Koeppe. (For more details on this supplement see page x.)

MARGIN FEATURES

We use the margin features in the textbook in several ways to help engage students, emphasize the relevance of biochemistry to their lives, and make it more accessible. We have given these features a new look to make them clearer and more easily identifiable. • Learning Objectives are used in many different ways in the classroom. To help reinforce key concepts while the student is reading the chapter we have indicated them with a \checkmark and number and integrated them on a chapter level as well as in the section introductions. They are also tied to the end-of-chapter problems to assist students in developing problem-solving skills and instructors in assessing students' understanding of some of the key concepts in each chapter.

6.4 Enzymes Facilitate the Formation of the Transition State

The free-energy difference between reactants and products accounts for the equilibrium of a reaction, but enzymes accelerate how quickly this equilibrium is attained. How can we explain the rate enhancement in terms of thermodynamics? To do so, we have to consider not the end points of the reaction but the chemical pathway between the end points.

A chemical reaction of substrate S to form product P goes through a *transition state* X^{\ddagger} that has a higher free energy than does either S or P. The double dagger denotes the transition state. The transition state is a fleeting molecular structure that is no longer the substrate but is not yet the product. The transition state is the least-stable and most-seldom-occurring species along the reaction pathway because it is the one with the highest free energy.

 \checkmark 2 Explain the relation between the transition state and the active site of an enzyme, and list the characteristics of active sites.

QUICK QUIZ Explain why a person who has a trypsinogen deficiency will suffer from more digestion difficulties than will a person lacking most other zymogens. • **Quick Quizzes** emulate that moment in a lecture when a professor asks, "Do you get it?" These questions allow students to check their understanding of the material as they read it so they can immediately gauge whether they need to review a discussion or can advance to the next topic. Answers are given at the end of each chapter.

• Margin Structures provide a quick reminder of a molecule or group that students may have seen earlier in the book or in another course. This allows students to understand the topic at hand without needing to look up a basic structure or organic chemistry principle elsewhere.

• **Did You Know?** features are short asides to the biochemical topic being discussed. They put a personal face on science, or, in the vein of Biological Insights, provide glimpses of how we use biochemistry in everyday life.

DID YOU KNOW?

Interestingly, digitalis was used effectively long before the discovery of the Na⁺–K⁺ ATPase. In 1785, William Withering, a British physician, heard tales of an elderly woman, known as "the old woman of Shropshire," who cured people of "dropsy" (which today would be recognized as congestive heart failure) with an extract of foxglove. Withering conducted the first scientific study of the effects of foxglove on congestive heart failure and documented its effectiveness.

• **Nutrition Facts** highlight essential vitamins in the margin next to where they are discussed as part of an enzyme mechanism or metabolic pathway. In these boxes, students will discover how we obtain vitamins from our diets and what happens if we do not have enough of them. These important molecules and their structures are listed in table form in the appendix of the book as well, to help students easily find where each vitamin is discussed in the book.

NUTRITION FACTS

Niacin Also called vitamin B₃, niacin is a component of coenzymes NAD⁺ and NADP⁺ (pp. 268–270), which are used in electron-transfer reactions. There are many sources of niacin, including chicken breast. Niacin deficiency results in the potentially fatal disease pellagra, a condition characterized by dermatitis, dementia, and diarrhea. [Brand X Pictures]

Media and Supplements

All of the new media resources for *Biochemistry: A Short Course* are available in our new are available in system.

www.macmillanhighered.com/launchpad/tymoczko3e

LaunchPad is a dynamic, fully integrated learning environment that brings together all of our teaching and learning resources in one place. It includes easy-to-use, powerful assessment tracking and grading tools, a personalized calendar, an announcement center, and communication tools to help you manage your course. This learning system also contains the fully interactive **e-Book** and other newly updated resources for students and instructors, including the following:

For Students

• **Case Studies** are a series of online biochemistry case studies that are assignable and assessable. Authored by Justin Hines, Assistant Professor of Chemistry at Lafayette College, each case study gives students practice in working with data, developing critical thinking skills, connecting topics, and applying knowledge to real scenarios.

• **e-Book** allows students to read the online version of the textbook, which combines the contents of the printed book, electronic study tools, and a full complement of student media specifically created to support the text.

• Hundreds of Self-Graded Practice Problems allow students to test their understanding of concepts explained in the text, with immediate feedback.

• **Metabolic Map** helps students understand the principles and applications of the core metabolic pathways. Students can work through guided tutorials with embedded assessment questions, or explore the Metabolic Map on their own using the dragging and zooming functionality of the map.

• **Problem-Solving Videos**, created by Scott Ensign of Utah State University, provide 24/7 online problem-solving help to students. Through a two-part approach, each 10-minute video covers a key textbook problem representing a topic that students traditionally struggle to master. Dr. Ensign first describes a proven problem-solving strategy and then applies the strategy to the problem at hand in clear, concise steps. Students can easily pause, rewind, and review any steps they wish until they firmly grasp not just the solution but also the reasoning behind it. Working through the problems in this way is designed to make students better and more confident at applying key strategies as they solve other textbook and exam problems.

• **Living Figures** allow students to view textbook illustrations of protein structures online in interactive 3-D using Jmol. Students can zoom and rotate 54 "live" structures to get a better understanding of their three-dimensional nature and can experiment with different display styles (space-filling, ball-and-stick, ribbon, backbone) by means of a user-friendly interface.

• **Self-Assessment Tool** allows students to test their understanding by taking an online multiple-choice quiz provided for each chapter, as well as a general chemistry review.

• Animated Techniques illustrate laboratory techniques described in the text.

• Learning Curve is a self-assessment tool that helps students evaluate their progress. Students can test their understanding by taking an online multiple-choice quiz provided for each chapter, as well as a general chemistry review.

For Instructors

All the features listed above for students plus:

• **e-Book** Instructors teaching from the e-Book can assign either the entire textbook or a custom version that includes only the chapters that correspond to their syllabi. They can choose to add notes to any page of the e-Book and share these notes with their students. These notes may include text, animations, or photographs.

• **Clicker Questions** are aligned with key concepts and misconceptions in each chapter so instructors can assess student understanding in real time during lectures.

• Newly Updated Lecture PowerPoint Files have been developed to minimize preparation time for new users of the book. These files offer suggested lectures including key illustrations and summaries that instructors can adapt to their teaching styles.

• **Updated Textbook Images and Tables** are offered as high-resolution JPEG files. The JPEGs are also offered in separate PowerPoint files.

• **Test Bank**, by Harvey Nikkel of Grand Valley State University, Susan Knock of Texas A&M University at Galveston, and Joseph Provost of Minnesota State University Moorhead, offers more than 1500 questions in editable Word format.

Student Companion

(1-319-03295-8)

For each chapter of the textbook, the Student Companion includes:

- Chapter Learning Objectives and Summary
- Self-Assessment Problems, including multiple-choice, short-answer, matching questions, and challenge problems, and their answers
- Expanded Solutions to the end-of-chapter problems in the textbook

CLINICAL INSIGHTS This icon signals the beginning of a Clinical Insight in the text.

Defects in organelle function may lead to disease (p. 14) Pathological conditions result if protein intake is inadequate (p. 44) Defects in collagen structure result in pathological conditions (p. 57) Protein misfolding and aggregation are associated with some neurological diseases (p. 63) Variations in $K_{\rm M}$ can have physiological consequences (p. 114) Loss of allosteric control may result in pathological conditions (p. 123) Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis (p. 138) Functional magnetic resonance imaging reveals regions of the brain processing sensory information (p. 152) Hemoglobin's oxygen affinity is adjusted to meet environmental needs (p. 154) Sickle-cell anemia is a disease caused by a mutation in hemoglobin (p. 157) Thalassemia is caused by an imbalanced production of hemoglobin chains (p. 159) Glucose is a reducing sugar (p. 171) The hormone erythropoietin is a glycoprotein (p. 178) Proteoglycans are important components of cartilage (p. 179) Mucins are glycoprotein components of mucus (p. 180) Lack of glycosylation can result in pathological conditions (p. 182) Lectins facilitate embryonic development (p. 183) Influenza virus binds to sialic acid residues (p. 183) Premature aging can result from the improper attachment of a hydrophobic group to a protein (p. 199) Lipid vesicles can be formed from phospholipids (p. 207) The association of prostaglandin H₂ synthase-1 with the membrane accounts for the action of aspirin (p. 211) Multidrug resistance highlights a family of membrane pumps with ATP-binding domains (p. 214) Harlequin ichthyosis is a dramatic result of a mutation in an ABC transporter protein (p. 214) Digitalis inhibits the Na^+-K^+ pump by blocking its dephosphorylation (p. 215) Mutations in protein kinase A can cause Cushing's syndrome (p. 230) Cholera and whooping cough are due to altered G-protein activity (p. 231) Some receptors contain tyrosine kinase domains within their covalent structures (p. 235) The conversion of proto-oncogenes into oncogenes disrupts the regulation of cell growth (p. 239) Protein kinase inhibitors may be effective anticancer drugs (p. 240) Protein digestion begins in the stomach (p. 248) Celiac disease results from the inability to properly digest certain proteins (p. 251) Exercise depends on various means of generating ATP (p. 265) Lack of activated pantothenate results in neurological problems (p. 271)

The six-carbon sugar is cleaved into two three-carbon fragments (p. 287) Excessive fructose consumption can lead to pathological conditions (p. 295) Many adults are intolerant of milk because they are deficient in lactase (p. 297) Galactose is highly toxic if the transferase is missing (p. 298) Aerobic glycolysis is a property of rapidly growing cells (p. 304) Cancer and exercise training affect glycolysis in a similar fashion (p. 305) Insulin fails to inhibit gluconeogenesis in type 2 diabetes (p. 323) Substrate cycles amplify metabolic signals (p. 323) Defective regulation of pyruvate dehydrogenase results in lactic acidosis (p. 338) Enhanced pyruvate dehydrogenase kinase activity facilitates the development of cancer (p. 339) The disruption of pyruvate metabolism is the cause of beriberi (p. 339) Defects in the citric acid cycle contribute to the development of cancer (p. 354) Loss of iron-sulfur cluster results in Friedreich's ataxia (p. 371) ATP synthase can be regulated (p. 395) Oxidative phosphorylation can be inhibited at many stages (p. 398) Mitochondrial diseases are being discovered in increasing numbers (p. 399) Hers disease is due to a phosphorylase deficiency (p. 453) Diabetes mellitus results from insulin insufficiency and glucagon excess (p. 466) A biochemical understanding of glycogen-storage diseases is possible (p. 467) The pentose phosphate pathway is required for rapid cell growth (p. 481) Glucose 6-phosphate dehydrogenase deficiency causes a druginduced hemolytic anemia (p. 481) Triacylglycerols are hydrolyzed by hormone-stimulated lipases (p. 490) Pathological conditions result if fatty acids cannot enter the mitochondria (p. 493) Ketogenic diets may have therapeutic properties (p. 498) Diabetes can lead to a life-threatening excess of ketone-body production (p. 499) Ketone bodies are a crucial fuel source during starvation (p. 500) Some fatty acids may contribute to the development of pathological conditions (p. 501) Fatty acid metabolism is altered in tumor cells (p. 513) A small fatty acid that causes big problems (p. 513) Aspirin exerts its effects by covalently modifying a key enzyme (p. 515) Phosphatidylcholine is an abundant phospholipid (p. 526) Gangliosides serve as binding sites for pathogens (p. 527) Disrupted lipid metabolism results in respiratory distress

syndrome and Tay–Sachs disease (p. 528)

The absence of the LDL receptor leads to familial hypercholesterolemia and atherosclerosis (p. 536) Cycling of the LDL receptor is regulated (p. 537) HDL seems to protect against atherosclerosis (p. 537) The clinical management of cholesterol levels can be understood at a biochemical level (p. 538) Bile salts facilitate lipid absorption (p. 539) Vitamin D is necessary for bone development (p. 541) Androgens can be used to artificially enhance athletic performance (p. 542) Blood levels of aminotransferase serve a diagnostic function (p. 553) Metabolism in context: inherited defects of the urea cycle cause hyperammonemia (p. 558) Inborn errors of metabolism can disrupt amino acid degradation (p. 565) Determining the basis of the neurological symptoms of phenylketonuria is an active area of research (p. 566)

Tetrahydrofolate carries activated one-carbon units (p. 576) High homocysteine levels correlate with vascular disease (p. 578) Salvage pathways recycle pyrimidine bases (p. 589)

Several valuable anticancer drugs block the synthesis of thymidylate (p. 595)

The synthesis of deoxyribonucleotides is controlled by the regulation of ribonucleotide reductase (p. 597)

The loss of adenosine deaminase activity results in severe combined immunodeficiency (p. 598)

Gout is induced by high serum levels of urate (p. 599) Lesch–Nyhan syndrome is a dramatic consequence of

mutations in a salvage-pathway enzyme (p. 600) Folic acid deficiency promotes birth defects such as spina

bifida (p. 600) Damaging DNA can inhibit cancer-cell growth (p. 622)

ATP hydrolysis (p. 630) Bacterial topoisomerase is a therapeutic target (p. 632) Telomeres are replicated by telomerase, a specialized polymerase that carries its own RNA template (p. 639) Some genetic diseases are caused by the expansion of repeats of three nucleotides (p. 644) Many cancers are caused by the defective repair of DNA (p. 650) Many potential carcinogens can be detected by their mutagenic action on bacteria (p. 650) Some antibiotics inhibit transcription (p. 667) Many bacterial cells release chemical signals that regulate gene expression in other cells (p. 670) Inappropriate enhancer use may cause cancer (p. 680) Induced pluripotent stem cells can be generated by introducing four transcription factors into differentiated cells (p. 680) Steroid-hormone receptors are targets for drugs (p. 683) Mutations that affect pre-mRNA splicing cause disease (p. 696) Most human pre-mRNAs can be spliced in alternative ways to yield different proteins (p. 697) Mutations in eukaryotic initiation factor 2 cause a curious pathological condition (p. 730) Some antibiotics inhibit protein synthesis (p. 730) Diphtheria toxin blocks protein synthesis in eukaryotes by inhibiting translocation (p. 731) Ricin fatally modifies 28S ribosomal RNA (p. 732) Next-generation sequencing methods enable the rapid determination of a complete genome sequence (p. 753)

The separation of DNA strands requires specific helicases and

PCR is a powerful technique in medical diagnostics, forensics, and studies of molecular evolution (p. 756)

BIOLOGICAL INSIGHTS This icon signals the beginning of a Biological Insight in the text.

Hemoglobin adaptations allow oxygen transport in extreme environments (p. 155)	A volcani (p. 432
Glucosinolates protect plants and add flavor to our diets (p. 173)	Why brea
Blood groups are based on protein glycosylation patterns (p. 181)	Glycogen
Membranes of extremophiles are built from ether lipids with	(p. 45
branched chains (p. 197)	A deficie
Venomous pit vipers use ion channels to generate a thermal	evolut
image (p. 216)	Hibernat
Snake venoms digest from the inside out (p. 254)	Urea is n
Fermentations provide usable energy in the absence of	nitrog
oxygen (p. 294)	Enzymes
Mitochondria are the result of an endosymbiotic event (p. 365)	one ar
The dead zone: too much respiration (p. 377)	Many bac
Regulated uncoupling leads to the generation of heat (p. 396)	expres
Chloroplasts, like mitochondria, arose from an endosymbiotic	RNA edit
event (p. 409)	Next-gen
Chlorophyll in potatoes suggests the presence of a toxin (p. 413)	detern

Many herbicides inhibit the light reactions of

photosynthesis (p. 421)

A volcanic eruption can affect photosynthesis worldwide (p. 432)

Why bread becomes stale: the role of starch (p. 434)

Glycogen depletion coincides with the onset of fatigue (p. 455)

A deficiency of glucose 6-phosphate dehydrogenase confers an evolutionary advantage in some circumstances (p. 483)

Hibernation presents nitrogen disposal problems (p. 558)

Jrea is not the only means of disposing of excess nitrogen (p. 559)

Enzymes of the purine-synthesis pathway are associated with one another in vivo (p. 592)

Many bacterial cells release chemical signals that regulate gene expression in other cells (p. 670)

RNA editing changes the proteins encoded by mRNA (p. 698) Next-generation sequencing methods enable the rapid

determination of a complete genome sequence (p. 753) PCR is a powerful technique in medical diagnostics, forensics,

and studies of molecular evolution (p. 756)

Acknowledgments

Our thanks go to the instructors and professors who have reviewed the chapters of this book. Their sharp eyes and keen insights strongly influenced us as we wrote and shaped the various drafts of each chapter to create this completed work.

Tabitha Amora, Ball State University Bynthia Anose, Bethel University Kimberly Bagley, SUNY Buffalo State David Baker, Delta College Michael Barbush, Baker University Ellen Batchelder, Unity College Moriah Beck, Wichita State University Nina Bernstein, MacEwan University Veronic Bezaire, Carleton University Mary Bruno, University of Connecticut John Cannon, Trinity International University James Cheetham, Carleton University Silvana Constantinescu, Marymount California University Peter DiMaria, Delaware State University Caryn Evilia, Idaho State University Brenda Fredette, *Medaille* College Scott Gabriel, Viterbo University Ratna Gupta, *Our Lady of the Lake College* Sarah Hosch, *Oakland University* Kelly Johanson, Xavier University of Louisiana Marjorie Jones, Illinois State University Susan Knock, Texas A&M University at Galveston

Kris Koudelka. Point Loma Nazarene University Ramaswamy Krishnamoorthi, Kansas State University Isabel Larraza, North Park University Linda Luck, SUNY Plattsburgh Kumaran Mani, University of Wyoming Jairam Menon, University of Michigan Medical School David Mitchell. College of Saint Benedict & Saint John's University Mautusi Mitra, University of West Georgia Ashvin Mohindra, Fleming College William Newton, Virginia Tech Brian Nichols. University of Illinois at Chicago Carleitta Paige-Anderson, Virginia Union University Janice Pellino, *Carthage College* Ivana Peralta, Vincennes University Elizabeth Roberts-Kirchhoff, University of Detroit Mercy John Rose, University of Georgia Martina Rosenberg, University of New Mexico Tricia Scott, Dalton State College Richard Sheardy, Texas Woman's University Kevin Siebenlist, Marquette University Matt Thomas, State College of Florida Jennifer Tsui, Marygrove College

Timothy Vail,Harvey Wiener,Northern Arizona UniversityManchester Community CollegeTodd Weaver,Marc Wold,University of Wisconsin–La CrosseUniversity of IowaKorin Wheeler,Adele Wolfson,Santa Clara UniversityWellesley College

The German scientist, writer, and statesman Johann Wolfgang von Goethe once remarked, "Thinking is easy, acting is difficult, and to put one's thoughts into action is the most difficult thing in the world." While we may disagree with Goethe's assertion that thinking is easy, we emphatically agree with the rest of the quotation. Thinking about biochemistry and then putting those thoughts into a book that is clear, welcoming, stimulating, and challenging is, if not the most difficult thing in the world, still very demanding. This task would be utterly impossible without our wonderful colleagues at W. H. Freeman. They are intelligent, dedicated, caring people who have taught us much about how to present science to students and, in the process, brought out the best in us. Although we have had the pleasure of working with our collaborators at W. H. Freeman on a number of projects, our appreciation of and gratefulness for their efforts and guidance are as sincere now as they were when we were inexperienced authors. Our experiences with this edition have been as delightful and rewarding as our past projects. We have many people to thank for this experience, some of whom we have worked with previously and some new to the effort. First, we would like to acknowledge the encouragement, patience, excellent advice, and good humor of our Publisher, Kate Ahr Parker. Kate can suggest difficult challenges with such grace and equanimity that we readily accept the challenge. New to our book team is our Senior Acquisitions Editor, Lauren Schultz. Her unfailing enthusiasm was a source of support and energy for the author team. New to our book team for this edition is Heidi Bamatter, our Developmental Editor. Heidi is another in a line of outstanding development editors that we have had the pleasure to work with at Freeman. Her insight, patience, and guidance made this effort successful and enjoyable. Elizabeth Geller, Senior Project Editor, managed the flow of the project with admirable efficiency. Teresa Wilson, our Manuscript Editor, enhanced the literary consistency and clarity of the text. Vicki Tomaselli, Design Manager, produced a design and layout that made the book welcoming and accessible. Christine Buese and Jacquelyn Wong, Photo Editor and Photo Researcher, respectively, found the photographs that helped to achieve one of our main goals—linking biochemistry to the everyday world of the student while making the text a visual treat. Janice Donnola, Illustration Coordinator, deftly directed the rendering of new illustrations. Paul Rohloff, Production Manager, made sure the difficulties of scheduling, composition, and manufacturing were readily overcome. We are more appreciative of the sales staff at W. H. Freeman for their enthusiastic support than we can put into words. Without the efforts of the sales force to persuade professors to examine our book, all of our own excitement and enthusiasm for this text would be meaningless. We also thank Susan Winslow. Her vision for science textbooks and her skill at gathering exceptional personnel make working with W. H. Freeman a true pleasure.

Thanks also to our many colleagues at our own institutions as well as throughout the country who patiently answered our questions and encouraged us on our quest. Finally, we owe a debt of gratitude to our families. Without their support, comfort, and understanding, this project could never have been undertaken, let alone successfully completed.

Brief Contents

PART I

The Molecular Design of Life

SECTION 1 Biochemistry Helps Us Understand	
Our World	1
Chapter 1 Biochemistry and the Unity of Life	3
Chapter 2 Water, Weak Bonds, and the	
Generation of Order Out of Chaos	17
SECTION 2 Protein Composition and Structure	35
Chapter 3 Amino Acids	37
Chapter 4 Protein Three-Dimensional Structur	e 47
Chapter 5 Techniques in Protein Biochemistry	69
SECTION 3 Basic Concepts and Kinetics of	
Enzymes	95
Chapter 6 Basic Concepts of Enzyme Action	97
Chapter 7 Kinetics and Regulation	111
Chapter 8 Mechanisms and Inhibitors	131
Chapter 9 Hemoglobin, an Allosteric Protein	149
SECTION 4 Carbohydrates and Lipids	165
Chapter 10 Carbohydrates	167
Chapter 11 Lipids	189
SECTION 5 Cell Membranes, Channels,	
Pumps, and Receptors	203
Chapter 12 Membrane Structure and Function	205
Chapter 13 Signal-Transduction Pathways	225
PART II	
Transducing and Storing Energy	
riunsuucing unu storing Liici 67	

SECTION 6 Basic Concepts and Design of Metabolism	245
Chapter 14 Digestion: Turning a Meal into Cellular Biochemicals Chapter 15 Metabolism: Basic Concepts and Design	247 257
SECTION 7 Glycolysis and Gluconeogenesis Chapter 16 Glycolysis Chapter 17 Gluconeogenesis	281 283 313
SECTION 8 The Citric Acid Cycle Chapter 18 Preparation for the Cycle Chapter 19 Harvesting Electrons from the Cycle	329 331 343
SECTION 9 Oxidative Phosphorylation Chapter 20 The Electron-Transport Chain Chapter 21 The Proton-Motive Force	361 363 383

SECTION 10	The Light Reactions of	
Photosynthesis and the Calvin Cycle		
Chapter 22	The Light Reactions	407
Chapter 23	The Calvin Cycle	427
SECTION 11	Glycogen Metabolism and	
the Pentose F	Phosphate Pathway	443
Chapter 24	Glycogen Degradation	445
Chapter 25	Glycogen Synthesis	45 9
Chapter 26	The Pentose Phosphate	
Pathway		473
SECTION 12	Fatty Acid and Lipid Metabolism	487
Chapter 27	Fatty Acid Degradation	48 9
Chapter 28	Fatty Acid Synthesis	507
Chapter 29	Lipid Synthesis: Storage Lipids,	
Phospholipid	ls, and Cholesterol	523
SECTION 13	The Metabolism of Nitrogen-	
9		549
Chapter 30	Amino Acid Degradation and	
the Urea Cycle		551
Chapter 31	Amino Acid Synthesis	571
•	Nucleotide Metabolism	585
-		

PART III

Synthesizing the Molecules of Life

SECTION 14 Nucleic Acid Structure		
and DNA Replication		
Chapter 33 The Structure of Informational		
Macromolecules: DNA and RNA	607	
Chapter 34 DNA Replication	627	
Chapter 35 DNA Repair and Recombination	643	
SECTION 15 RNA Synthesis, Processing,		
and Regulation	657	
Chapter 36 RNA Synthesis and Regulation		
in Bacteria	659	
Chapter 37 Gene Expression in Eukaryotes	675	
Chapter 38 RNA Processing in Eukaryotes	691	
SECTION 16 Protein Synthesis and		
Recombinant DNA Techniques	705	
Chapter 39 The Genetic Code	707	
Chapter 40 The Mechanism of Protein		
Synthesis	721	
Chapter 41 Recombinant DNA Techniques	743	

Contents

PART I

3

4

5 5

6

6 7

7

8

11

12

14

17

18

18

20

20

21

21

22

22

23

24

24

26 26

The Molecular Design of Life **SECTION 1** Biochemistry Helps Us to Understand Our World 1 **Chapter 1 Biochemistry and the Unity of Life** 1.1 Living Systems Require a Limited Variety of Atoms and Molecules 1.2 There Are Four Major Classes of Biomolecules Proteins Are Highly Versatile Biomolecules Nucleic Acids Are the Information Molecules of the Cell Lipids Are a Storage Form of Fuel and Serve as a Barrier Carbohydrates Are Fuels and Informational Molecules 1.3 The Central Dogma Describes the Basic Principles of Biological Information Transfer 1.4 Membranes Define the Cell and Carry Out Cellular **Functions Biochemical Functions Are Sequestered in Cellular** Compartments Some Organelles Process and Sort Proteins and Exchange Material with the Environment **Clinical Insight** Defects in Organelle Function May Lead to Disease Chapter 2 Water, Weak Bonds, and the **Generation of Order Out of Chaos** 2.1 Thermal Motions Power Biological Interactions 2.2 **Biochemical Interactions Take Place** in an Aqueous Solution 2.3 Weak Interactions Are Important Biochemical Properties Electrostatic Interactions Are Between Electrical Charges Hydrogen Bonds Form Between an Electronegative Atom and Hydrogen van der Waals Interactions Depend on Transient Asymmetry in Electrical Charge Weak Bonds Permit Repeated Interactions 2.4 Hydrophobic Molecules Cluster Together Membrane Formation Is Powered by the Hydrophobic Effect Protein Folding Is Powered by the Hydrophobic Effect Functional Groups Have Specific Chemical Properties pH Is an Important Parameter of 2.5 **Biochemical Systems**

An Acid Is a Proton Donor, Whereas a Base Is a Proton Acceptor Acids Have Differing Tendencies to Ionize Buffers Resist Changes in pH Buffers Are Crucial in Biological Systems Making Buffers Is a Common Laboratory Practice	Water Ionizes to a Small Extent
Acids Have Differing Tendencies to Ionize Buffers Resist Changes in pH Buffers Are Crucial in Biological Systems	,
Buffers Resist Changes in pH Buffers Are Crucial in Biological Systems	Proton Acceptor
Buffers Are Crucial in Biological Systems	Acids Have Differing Tendencies to Ionize
0,	Buffers Resist Changes in pH
Making Buffers Is a Common Laboratory Practice	Buffers Are Crucial in Biological Systems
8	Making Buffers Is a Common Laboratory Practice

	CTION 2 otein Composition and Structure	35
Cha	apter 3 Amino Acids	37
	Two Different Ways of Depicting Biomolecules Will Be Used	38
3.1	Proteins Are Built from a Repertoire of	
	20 Amino Acids	38
	Most Amino Acids Exist in Two Mirror-Image Forms	38
	All Amino Acids Have at Least Two Charged Groups	38
3.2	,	70
	Functional Groups	39
	Hydrophobic Amino Acids Have Mainly Hydrocarbon Side Chains	39
	Polar Amino Acids Have Side Chains That Contain an	0,
	Electronegative Atom	41
	Positively Charged Amino Acids Are Hydrophilic	42
	Negatively Charged Amino Acids Have Acidic	
	Side Chains	43
	The Ionizable Side Chains Enhance Reactivity and Bonding	43
3.3	Essential Amino Acids Must Be Obtained from the Diet	44
8	Clinical Insight Pathological Conditions Result If Protein Intake Is Inadequate	44
Cha	apter 4 Protein Three-Dimensional	
	ucture	47
4.1	Primary Structure: Amino Acids Are Linked	
	by Peptide Bonds to Form Polypeptide Chains	48
	Proteins Have Unique Amino Acid Sequences	10
	Specified by Genes	49
	Polypeptide Chains Are Flexible Yet Conformationally Restricted	50
4.2	Secondary Structure: Polypeptide Chains	
	Can Fold into Regular Structures	52
	The Alpha Helix Is a Coiled Structure Stabilized by Intrachain Hydrogen Bonds	52
	Beta Sheets Are Stabilized by Hydrogen Bonding	52
	Between Polypeptide Strands	53
	Polypeptide Chains Can Change Direction by Making Reverse Turns and Loops	55
	Fibrous Proteins Provide Structural Support for	
	Cells and Tissues	55
8	Clinical Insight Defects in Collagen Structure	
4 7	Result in Pathological Conditions	57
4.3	Tertiary Structure: Water–Soluble Proteins Fold into Compact Structures	57
	Myoglobin Illustrates the Principles of Tertiary Structure	57 57
	The Tertiary Structure of Many Proteins Can Be	57
	Divided into Structural and Functional Units	59
4.4	Quaternary Structure: Multiple Polypeptide	
	Chains Can Assemble into a Single Protein	59

4.5	The Amino Acid Sequence of a Protein	
	Determines Its Three-Dimensional Structure	60
	Proteins Fold by the Progressive Stabilization of	
	Intermediates Rather Than by Random Search	61
	Some Proteins Are Inherently Unstructured and Can	
	Exist in Multiple Conformations	62
3	Clinical Insight Protein Misfolding and Aggregation	
	Are Associated with Some Neurological Diseases	63
Cha	apter 5 Techniques in Protein Biochemistry	69
5.1	The Proteome Is the Functional Representation	
	of the Genome	70
5.2	The Purification of a Protein Is the First Step in	
	Understanding Its Function	70
	Proteins Can Be Purified on the Basis of Differences in	
	Their Chemical Properties	71
	Proteins Must Be Removed from the Cell to Be Purified	71
	Proteins Can Be Purified According to Solubility, Size,	
	Charge, and Binding Affinity	72
	Proteins Can Be Separated by Gel Electrophoresis and	
	Displayed	74
	A Purification Scheme Can Be Quantitatively Evaluated	77
5.3	Immunological Techniques Are Used to Purify	
	and Characterize Proteins	78
	Centrifugation Is a Means of Separating Proteins	78
	Gradient Centrifugation Provides an Assay for the	
	Estradiol–Receptor Complex	79
	Antibodies to Specific Proteins Can Be Generated	80
	Monoclonal Antibodies with Virtually Any Desired	01
	Specificity Can Be Readily Prepared	81
	The Estrogen Receptor Can Be Purified by Immunoprecipitation	83
	Proteins Can Be Detected and Quantified with the Use of an Enzyme-Linked Immunosorbent Assay	84
	Western Blotting Permits the Detection of Proteins Separated by Gel Electrophoresis	84
5.4	Determination of Primary Structure Facilitates	
	an Understanding of Protein Function	86
	Mass Spectrometry Can Be Used to Determine a	
	Protein's Mass, Identity, and Sequence	88
	Amino Acids Are Sources of Many Kinds of Insight	90
SEC	CTION 3	
	sic Concepts and Kinetics of Enzymes	95
	•	
	apter 6 Basic Concepts of Enzyme Action	97
6.1	Enzymes Are Powerful and Highly Specific Catalysts	97
	Proteolytic Enzymes Illustrate the Range of Enzyme Specificity	98
	There Are Six Major Classes of Enzymes	98
6.2	Many Enzymes Require Cofactors for Activity	99
6.3	Gibbs Free Energy Is a Useful Thermodynamic	
0.0	Function for Understanding Enzymes	100
	The Free-Energy Change Provides Information About	100
	the Spontaneity but Not the Rate of a Reaction	100
	The Standard Free-Energy Change of a Reaction Is Related to the Equilibrium Constant	101
	Enzymes Alter the Reaction Rate but Not the Reaction	
	Equilibrium	102

	Contents	XVII
6	.4 Enzymes Facilitate the Formation of the Transition State	103
	The Formation of an Enzyme–Substrate Complex Is the First Step in Enzymatic Catalysis	103
		103
	The Active Sites of Enzymes Have Some Common Features The Binding Energy Between Enzyme and Substrate Is	
	Important for Catalysis Transition-State Analogs Are Potent Inhibitors of Enzyme	105 106
(Chapter 7 Kinetics and Regulation	111
7	.1 Kinetics Is the Study of Reaction Rates	112
7	.2 The Michaelis–Menten Model Describes the Kinetics of Many Enzymes	113
	Clinical Insight Variations in K _M Can Have	
	Physiological Consequences	114
	$K_{\rm M}$ and $V_{\rm max}$ Values Can Be Determined by Several Means	115
	$K_{\rm M}$ and $V_{\rm max}$ Values Are Important Enzyme Characteristics	
	k_{cal}/K_{M} is a Measure of Catalytic Efficiency	116
	Most Biochemical Reactions Include Multiple Substrates	117
7	.3 Allosteric Enzymes Are Catalysts and Information Sensors	118
	Allosteric Enzymes Are Regulated by Products of	110
	the Pathways Under Their Control	120
	Allosterically Regulated Enzymes Do Not Conform to Michaelis–Menten Kinetics	121
	Allosteric Enzymes Depend on Alterations in Quaternary Structure	121
	Regulator Molecules Modulate the R \implies T Equilibrium	122
-	The Sequential Model Also Can Account for Allosteric Effects	123
	Clinical Insight Loss of Allosteric Control May Result in Pathological Conditions	123
7	.4 Enzymes Can Be Studied One Molecule at a Time	123
0	Chapter 8 Mechanisms and Inhibitors	131
8	A Few Basic Catalytic Strategies Are Used by	
	Many Enzymes	131
8	2.2 Enzyme Activity Can Be Modulated by	
	Temperature, pH, and Inhibitory Molecules	132
	Temperature Enhances the Rate of Enzyme-Catalyzed	
	Reactions	132
	Most Enzymes Have an Optimal pH	133
	Enzymes Can Be Inhibited by Specific Molecules	134
	Reversible Inhibitors Are Kinetically Distinguishable Irreversible Inhibitors Can Be Used to Map	135
-	the Active Site	137
	Clinical Insight Penicillin Irreversibly Inactivates a Key Enzyme in Bacterial Cell-Wall Synthesis	138
8	.3 Chymotrypsin Illustrates Basic Principles of	
	Catalysis and Inhibition	140
	Serine 195 Is Required for Chymotrypsin Activity	140
	Chymotrypsin Action Proceeds in Two Steps Linked by a Covalently Bound Intermediate	141
	The Catalytic Role of Histidine 57 Was Demonstrated by Affinity Labeling	142
	Serine Is Part of a Catalytic Triad That Includes	140
	Histidine and Aspartic Acid	142

Contents xvii

xviii Contents

Cha	pter 9 Hemoglobin, an Allosteric Protein	149
9.1	Hemoglobin Displays Cooperative Behavior	150
9.2	Myoglobin and Hemoglobin Bind Oxygen in	100
-	Heme Groups	150
*	Clinical Insight Functional Magnetic Resonance	
	Imaging Reveals Regions of the Brain Processing	150
9.3	Sensory Information Hemoglobin Binds Oxygen Cooperatively	152 152
9.4	An Allosteric Regulator Determines the	152
2.1	Oxygen Affinity of Hemoglobin	154
3	Clinical Insight Hemoglobin's Oxygen Affinity Is	
	Adjusted to Meet Environmental Needs	154
*	Biological Insight Hemoglobin Adaptations Allow	155
05	Oxygen Transport in Extreme Environments	155
9.5	Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen	155
9.6	Mutations in Genes Encoding Hemoglobin	100
2.0	Subunits Can Result in Disease	156
*	Clinical Insight Sickle-Cell Anemia Is a Disease	
	Caused by a Mutation in Hemoglobin	157
	NEW Clinical Insight Thalassemia is Caused by an	150
	Imbalanced Production of Hemoglobin Chains	159
SEC	TION 4	
Car	bohydrates and Lipids	165
Cha	pter 10 Carbohydrates	167
10.1	Monosaccharides Are the Simplest Carbohydrates	168
	Many Common Sugars Exist in Cyclic Forms	169
NEV	V Pyranose and Furanose Rings Can Assume	
36	Different Conformations	171 171
	NEW Clinical Insight Glucose Is a Reducing Sugar Monosaccharides Are Joined to Alcohols and	171
	Amines Through Glycosidic Bonds	172
	Biological Insight Glucosinolates Protect Plants	
	and Add Flavor to Our Diets	173
10.2		177
	Carbohydrates	173
	Specific Enzymes Are Responsible for Oligosaccharide Assembly	173
	Sucrose, Lactose, and Maltose Are the Common	
	Disaccharides	174
	Glycogen and Starch Are Storage Forms of Glucose	175
	Cellulose, a Structural Component of Plants, Is Made of Chains of Glucose	175
10.3		175
10.5	Form Glycoproteins	177
	Carbohydrates May Be Linked to Asparagine, Serine, or	
	Threonine Residues of Proteins	177
8		170
	Glycoprotein Protocolycopy Composed of Polycoccharides and	178
	Proteoglycans, Composed of Polysaccharides and Protein, Have Important Structural Roles	178
38	Clinical Insight Proteoglycans Are Important	-
	Components of Cartilage	179
8	Clinical Insight Mucins Are Glycoprotein	100
	Components of Mucus	180

*	Biological Insight Blood Groups Are Based on Protein Glycosylation Patterns	181
	Clinical Insight Lack of Glycosylation Can Result	101
	in Pathological Conditions	182
10.4	Lectins Are Specific Carbohydrate-Binding Proteins	182
	Lectins Promote Interactions Between Cells	182
	Clinical Insight Lectins Facilitate Embryonic	
775	Development	183
8	Clinical Insight Influenza Virus Binds to Sialic Acid Residues	183
Cha	pter 11 Lipids	189
11.1	Fatty Acids Are a Main Source of Fuel	190
	Fatty Acids Vary in Chain Length and Degree of Unsaturation	191
	The Degree and Type of Unsaturation Are Important to Health	192
11.2	Triacylglycerols Are the Storage Form of Fatty Acids	193
11.3	There Are Three Common Types of	
	Membrane Lipids	194
	Phospholipids Are the Major Class of Membrane Lipids	194
	Membrane Lipids Can Include Carbohydrates	196
	Steroids Are Lipids That Have a Variety of Roles	196
ар С	Biological Insight Membranes of Extremophiles Are Built from Ether Lipids with Branched Chains	197
	Membrane Lipids Contain a Hydrophilic and a Hydrophobic Moiety	197
	Some Proteins Are Modified by the Covalent Attachment of Hydrophobic Groups	198
8	Clinical Insight Premature Aging Can Result from the Improper Attachment of a Hydrophobic Group to a Protein	199
SECT	ΓΙΟΝ 5	
	Membranes, Channels, Pumps, and	
	ptors	203
	pter 12 Membrane Structure and ction	205
		205
	Phospholipids and Clycolipids Form Bimolecular Sheets	206
8	Clinical Insight Lipid Vesicles Can Be Formed from Phospholipids	207
10.0	Lipid Bilayers Are Highly Impermeable to Ions and Most Polar Molecules	207
12.2	Membrane Fluidity Is Controlled by Fatty Acid Composition and Cholesterol Content	208
12.3	Proteins Carry Out Most Membrane Processes	200
	Proteins Associate with the Lipid Bilayer in	
18	a Variety of Ways Clinical Insight The Association of Prostaglandin H ₂	209
φ	Synthase-I with the Membrane Accounts for	
	the Action of Aspirin	211

12.4	Lipids and Many Membrane Proteins Diffuse Laterally in the Membrane	211
12.5	A Major Role of Membrane Proteins Is to Function As Transporters	212
	The Na ⁺ –K ⁺ ATPase Is an Important Pump in Many Cells	213
<u>.</u>	Clinical Insight Multidrug Resistance Highlights a Family of Membrane Pumps with ATP-Binding Domains	214
1986	Clinical Insight Harlequin Ichthyosis Is a Dramatic Result of a Mutation in an ABC Transporter Protein	214
æ	Secondary Transporters Use One Concentration Gradient to Power the Formation of Another	214
198	by Blocking Its Dephosphorylation	215
-96-	Specific Channels Can Rapidly Transport Ions Across Membranes	216
*	Biological Insight Venomous Pit Vipers Use Ion Channels to Generate a Thermal Image	216
	The Structure of the Potassium Ion Channel Reveals the Basis of Ion Specificity	216
	The Structure of the Potassium Ion Channel Explains Its Rapid Rate of Transport	218
Cha	pter 13 Signal-Transduction Pathways	225
13.1	Signal Transduction Depends on Molecular Circuits	225
13.2	Receptor Proteins Transmit Information into the Cell	227
	Seven-Transmembrane-Helix Receptors Change Conformation in Response to Ligand Binding and Activate G Proteins	227
	Ligand Binding to 7TM Receptors Leads to the Activation of G Proteins	228
	Activated G Proteins Transmit Signals by Binding to Other Proteins	229
	Cyclic AMP Stimulates the Phosphorylation of Many Target Proteins by Activating Protein Kinase A	229
100	NEW Clinical Insight Mutations in Protein Kinase A Can Cause Cushing's Syndrome	230
	G Proteins Spontaneously Reset Themselves Through GTP Hydrolysis	230
198	Clinical Insight Cholera and Whooping Cough Are Due to Altered G-Protein Activity	231
	The Hydrolysis of Phosphatidylinositol Bisphosphate by Phospholipase C Generates Two Second Messengers	232
13.3	Some Receptors Dimerize in Response to Ligand Binding and Recruit Tyrosine Kinases	233
	Receptor Dimerization May Result in Tyrosine Kinase Recruitment	233
198	Clinical Insight Some Receptors Contain Tyrosine Kinase Domains Within Their Covalent Structures	235
1	Ras Belongs to Another Class of Signaling G Proteins	236
	Metabolism in Context: Insulin Signaling Regulates Metabolism	236
	The Insulin Receptor Is a Dimer That Closes Around a Bound Insulin Molecule	236

	Contents	xix
	The Activated Insulin-Receptor Kinase Initiates a Kinase Cascade	237
	Insulin Signaling Is Terminated by the Action of Phosphatases	238
13.5	Calcium Ion Is a Ubiquitous Cytoplasmic Messenger	238
13.6	Defects in Signaling Pathways Can Lead to Diseases	239
8	Clinical Insight The Conversion of Proto-oncogenes into Oncogenes Disrupts the Regulation of Cell Growth	239
8	Clinical Insight Protein Kinase Inhibitors May Be Effective Anticancer Drugs	240
PAR	RT II	
Trai	nsducing and Storing Energy	
SECT	FION 6	
Basi	c Concepts and Design of Metabolism	245
	pter 14 Digestion: Turning a Meal into Ilar Biochemicals	247
14.1	Digestion Prepares Large Biomolecules for Use in Metabolism	247
	Most Digestive Enzymes Are Secreted as Inactive Precursors	248
14.2 35	Proteases Digest Proteins into Amino Acids and Peptides	248
	NEW Clinical Insight Protein Digestion Begins in the Stomach	e 248
NEW	Protein Digestion Continues in the Intestine	249
38	NEW Clinical Insight Celiac Disease Results from the Inability to Properly Digest Certain Proteins	251
14.3	Dietary Carbohydrates Are Digested by Alpha-Amylase	251
14.4	The Digestion of Lipids Is Complicated by Their Hydrophobicity	252
۲	Biological Insight Snake Venoms Digest from the Inside Out	254
Cha Desi	pter 15 Metabolism: Basic Concepts and gn	257
	Energy Is Required to Meet Three	
	Fundamental Needs	258
15.2	Metabolism Is Composed of Many	250
	Interconnecting Reactions Metabolism Consists of Energy-Yielding Reactions and Energy-Requiring Reactions	258 259
	A Thermodynamically Unfavorable Reaction Can Be Driven by a Favorable Reaction	260
15.3	ATP Is the Universal Currency of Free Energy	260
	ATP Hydrolysis Is Exergonic	261
	ATP Hydrolysis Drives Metabolism by Shifting the Equilibrium of Coupled Reactions	261
	The High Phosphoryl-Transfer Potential of	
	ATP Results from Structural Differences Between ATP and Its Hydrolysis Products	263

XX	Contents	
	Phosphoryl-Transfer Potential Is an Important Form of Cellular Energy Transformation	264
8	Clinical Insight Exercise Depends on Various Means of Generating ATP	265
	Phosphates Play a Prominent Role in Biochemical Processes	266
15.4	The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy	266
	Carbon Oxidation Is Paired with a Reduction	266
	Compounds with High Phosphoryl-Transfer Potential Can Couple Carbon Oxidation to ATP Synthesis	267
15.5	Metabolic Pathways Contain Many Recurring Motifs	268
	Activated Carriers Exemplify the Modular Design and Economy of Metabolism	268
8	Clinical Insight Lack of Activated Pantothenate Results in Neurological Problems	271
	Many Activated Carriers Are Derived from Vitamins	271
15.6	Metabolic Processes Are Regulated in Three Principal Ways	273
	The Amounts of Enzymes Are Controlled	274
	Catalytic Activity Is Regulated	274
	The Accessibility of Substrates Is Regulated	275
	FION 7	
Glyc	olysis and Gluconeogenesis	281
Cha	pter 16 Glycolysis	283
	Glycolysis Is an Energy-Conversion Pathway	284
	Hexokinase Traps Glucose in the Cell and Begins Glycolysis	284
	Fructose 1,6-bisphosphate Is Generated from Glucose 6-phosphate	286
8	Clinical Insight The Six-Carbon Sugar Is Cleaved into Two Three-Carbon Fragments	287
	The Oxidation of an Aldehyde Powers the Formation of a Compound Having High Phosphoryl-Transfer Potential	288
	ATP Is Formed by Phosphoryl Transfer from 1,3-Bisphosphoglycerate	289
	Additional ATP Is Generated with the Formation of Pyruvate	290
1(0	Two ATP Molecules Are Formed in the Conversion of Glucose into Pyruvate	291
16.2	NAD ⁺ Is Regenerated from the Metabolism of Pyruvate	291
-06-	Fermentations Are a Means of Oxidizing NADH	292
100	Biological Insight Fermentations Provide Usable Energy in the Absence of Oxygen	294
16.3	Fructose and Galactose Are Converted into Glycolytic Intermediates	294
NEW	Fructose Is Converted into Glycolytic Intermediates by Fructokinase	295
1	NEW Clinical Insight Excessive Fructose Consumption Can Lead to Pathological Conditions	295
	Galactose Is Converted into Glucose 6-phosphate	296
B	Clinical Insight Many Adults Are Intolerant of Milk Because They Are Deficient in Lactase	297

8	Clinical Insight Galactose Is Highly Toxic If the	
1.6.4	Transferase Is Missing	298
16.4	The Glycolytic Pathway Is Tightly Controlled	299
	Glycolysis in Muscle Is Regulated by Feedback Inhibition to Meet the Need for ATP	299
	The Regulation of Glycolysis in the Liver Corresponds to the Biochemical Versatility of the Liver	300
	A Family of Transporters Enables Glucose to Enter and Leave Animal Cells	303
86	NEW Clinical Insight Aerobic Glycolysis Is a Property of Rapidly Growing Cells	304
86	Clinical Insight Cancer and Exercise Training Affect Glycolysis in a Similar Fashion	305
16.5	Metabolism in Context: Glycolysis Helps	
	Pancreatic Beta Cells Sense Glucose	305
Cha	pter 17 Gluconeogenesis	313
17.1		
	Noncarbohydrate Precursors	314
	Gluconeogenesis Is Not a Complete Reversal of Glycolysis	314
	The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate	316
	Oxaloacetate Is Shuttled into the Cytoplasm and Converted into Phosphoenolpyruvate	317
	The Conversion of Fructose 1,6-bisphosphate into Fructose 6-phosphate and Orthophosphate Is an Irreversible Step	318
	The Generation of Free Glucose Is an Important Control Point	319
	Six High-Transfer-Potential Phosphoryl Groups Are Spent in Synthesizing Glucose from Pyruvate	319
17.2	Reciprocally Regulated	320
	Energy Charge Determines Whether Glycolysis or Gluconeogenesis Will Be More Active	320
	The Balance Between Glycolysis and Gluconeogenesis in the Liver Is Sensitive to Blood–Glucose	701
36	Concentration Clinical Insight Insulin Fails to Inhibit	321
	Gluconeogenesis in Type 2 Diabetes	323
8	Metabolic Signals	323
17.3	Metabolism in Context: Precursors Formed by Muscle Are Used by Other Organs	324
	FION 8	
The	Citric Acid Cycle	329
Cha	pter 18 Preparation for the Cycle	331
18.1	Pyruvate Dehydrogenase Forms Acetyl	
	Coenzyme A from Pyruvate	332
	The Synthesis of Acetyl Coenzyme A from Pyruvate Requires Three Enzymes and	777
	Five Coenzymes Flexible Linkages Allow Lipoamide to Move Between	333
18.2	Different Active Sites	335
10.2	Regulated by Two Mechanisms	337

8	Clinical Insight Defective Regulation of Pyruvate Dehydrogenase Results in Lactic Acidosis	338
B	Clinical Insight Enhanced Pyruvate	550
	Dehydrogenase Kinase Activity Facilitates the	
8	Development of Cancer	339
*	Clinical Insight The Disruption of Pyruvate Metabolism Is the Cause of Beriberi	339
Cha	oter 19 Harvesting Electrons from	
	Cycle	343
	The Citric Acid Cycle Consists of Two Stages	344
19.2	Stage One Oxidizes Two Carbon Atoms to	
	Gather Energy-Rich Electrons	344
	Citrate Synthase Forms Citrate from Oxaloacetate and Acetyl Coenzyme A	344
	The Mechanism of Citrate Synthase Prevents	
	Undesirable Reactions	345
	Citrate Is Isomerized into Isocitrate	346
	Isocitrate Is Oxidized and Decarboxylated to Alpha-Ketoglutarate	346
	Succinyl Coenzyme A Is Formed by the Oxidative	540
	Decarboxylation of Alpha-Ketoglutarate	347
19.3	Stage Two Regenerates Oxaloacetate and	
	Harvests Energy-Rich Electrons	347
	A Compound with High Phosphoryl-Transfer Potential Is Generated from Succinyl Coenzyme A	347
	Succinyl Coenzyme A Synthetase Transforms Types of Biochemical Energy	348
	Oxaloacetate Is Regenerated by the Oxidation of Succinate	349
	The Citric Acid Cycle Produces High-Transfer-Potential Electrons, an ATP, and Carbon Dioxide	349
19.4	The Citric Acid Cycle Is Regulated	352
	The Citric Acid Cycle Is Controlled at Several Points	352
	The Citric Acid Cycle Is a Source of Biosynthetic Precursors	353
215	The Citric Acid Cycle Must Be Capable of Being Rapidly Replenished	353
8	Clinical Insight Defects in the Citric Acid Cycle Contribute to the Development of Cancer	354
19.5	The Glyoxylate Cycle Enables Plants and	551
19.0	Bacteria to Convert Fats into Carbohydrates	355
SECT	FION 9	
	ative Phosphorylation	361
Char	oter 20 The Electron-Transport Chain	363
	Oxidative Phosphorylation in Eukaryotes	
	Takes Place in Mitochondria	364
	Mitochondria Are Bounded by a Double Membrane	364
ж.	Biological Insight Mitochondria Are the Result of an Endosymbiotic Event	365
20.2	Oxidative Phosphorylation Depends on Electron	
	Transfer The Electron-Transfer Potential of an Electron Is	366
	The Electron-Transfer Potential of an Electron Is Measured as Redox Potential	366
	Electron Flow Through the Electron-Transport Chain Creates a Proton Gradient	367

	Contents	xxi
	The Electron-Transport Chain Is a Series of Coupled Oxidation–Reduction Reactions	368
Å	NEW Clinical Insight Loss of Iron-Sulfur Cluster Results in Friedreich's Ataxia	371
20.3	The Respiratory Chain Consists of Proton	
	Pumps and a Physical Link to the Citric Acid Cycle	371
	The High-Potential Electrons of NADH Enter the Respiratory Chain at NADH-Q Oxidoreductase	371
	Ubiquinol Is the Entry Point for Electrons from FADH ₂ of Flavoproteins	373
	Electrons Flow from Ubiquinol to Cytochrome <i>c</i> Through Q-Cytochrome <i>c</i> Oxidoreductase	373
	The Q Cycle Funnels Electrons from a Two-Electron Carrier to a One-Electron Carrier and Pumps Protons	374
	Cytochrome <i>c</i> Oxidase Catalyzes the Reduction of Molecular Oxygen to Water	375
аўся Парі	Biological Insight The Dead Zone: Too Much	
	Respiration	377
	Toxic Derivatives of Molecular Oxygen Such As Superoxide Radical Are Scavenged by Protective Enzymes	377
Cha	pter 21 The Proton-Motive Force	383
21.1	A Proton Gradient Powers the Synthesis of ATP	384
	ATP Synthase Is Composed of a Proton-Conducting Unit and a Catalytic Unit	385
	Proton Flow Through ATP Synthase Leads to the	70/
	Release of Tightly Bound ATP Rotational Catalysis Is the World's Smallest	386
	Molecular Motor	387
	Proton Flow Around the c Ring Powers ATP Synthesis	388
21.2	Shuttles Allow Movement Across Mitochondrial Membranes	390
	Electrons from Cytoplasmic NADH Enter	570
	Mitochondria by Shuttles	390
	The Entry of ADP into Mitochondria Is Coupled to the Exit of ATP	392
	Mitochondrial Transporters Allow Metabolite Exchange	
21.7	Between the Cytoplasm and Mitochondria	393
21.3	Cellular Respiration Is Regulated by the Need for ATP	393
	The Complete Oxidation of Glucose Yields About 30 Molecules of ATP	393
	The Rate of Oxidative Phosphorylation Is Determined by the Need for ATP	395
38	NEW Clinical Insight ATP Synthase Can Be Regulated	395
*	Biological Insight Regulated Uncoupling Leads to the Generation of Heat	396
88	Clinical Insight Oxidative Phosphorylation Can Be Inhibited at Many Stages	398
3	Clinical Insight Mitochondrial Diseases Are Being Discovered in Increasing Numbers	399
	Power Transmission by Proton Gradients Is a	399
	Central Motif of Bioenergetics	400

xxii Contents

SECTION 10 The Light Reactions of Photosynthesis and the Calvin Cycle 405 **Chapter 22 The Light Reactions** 407 22.1 Photosynthesis Takes Place in Chloroplasts 408 **Biological Insight** Chloroplasts, Like Mitochondria, Arose from an Endosymbiotic Event 409 22.2 Photosynthesis Transforms Light Energy into **Chemical Energy** 409 Chlorophyll Is the Primary Receptor in Most Photosynthetic Systems 410 Light-Harvesting Complexes Enhance the Efficiency of Photosynthesis 411 **Biological Insight** Chlorophyll in Potatoes Suggests the Presence of a Toxin 413 22.3 Two Photosystems Generate a Proton Gradient and NADPH 413 Photosystem I Uses Light Energy to Generate Reduced Ferredoxin, a Powerful Reductant 414 Photosystem II Transfers Electrons to Photosystem I and Generates a Proton Gradient 415 Cytochrome $b_6 f$ Links Photosystem II to Photosystem I 416 The Oxidation of Water Achieves Oxidation-Reduction Balance and Contributes Protons to the Proton Gradient 416 22.4 A Proton Gradient Drives ATP Synthesis 418 The ATP Synthase of Chloroplasts Closely Resembles That of Mitochondria 418 NEW The Activity of Chloroplast ATP Synthase Is 419 Regulated Cyclic Electron Flow Through Photosystem I Leads to the Production of ATP Instead of NADPH 419 The Absorption of Eight Photons Yields One O₂, Two NADPH, and Three ATP Molecules 420 The Components of Photosynthesis Are **Highly Organized** 421 **Biological Insight** Many Herbicides Inhibit the **Light Reactions of Photosynthesis** 421 Chapter 23 The Calvin Cycle 427 23.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water 428 Carbon Dioxide Reacts with Ribulose 1,5-bisphosphate to Form Two Molecules of 3-Phosphoglycerate 429 Hexose Phosphates Are Made from Phosphoglycerate, and Ribulose 1,5-bisphosphate Is Regenerated 430 Three Molecules of ATP and Two Molecules of NADPH Are Used to Bring Carbon Dioxide to the Level of a Hexose 430 **Biological Insight** A Volcanic Eruption Can Affect Photosynthesis Worldwide 432 Starch and Sucrose Are the Major Carbohydrate Stores in Plants 433 **Biological Insight** Why Bread Becomes Stale: The Role of Starch 434 23.2 The Calvin Cycle Is Regulated by the Environment 434

	Thioredoxin Plays a Key Role in Regulating the Calvin Cycle	435
	Rubisco Also Catalyzes a Wasteful Oxygenase Reaction	436
	The C ₄ Pathway of Tropical Plants Accelerates	150
	Photosynthesis by Concentrating Carbon Dioxide	436
	Crassulacean Acid Metabolism Permits Growth in Arid Ecosystems	438
SEC	ΓΙΟΝ 11	
Glyc	ogen Metabolism and the Pentose	
Pho	sphate Pathway	443
Cha	pter 24 Glycogen Degradation	445
24.1	Glycogen Breakdown Requires Several Enzymes	446
	Phosphorylase Cleaves Glycogen to Release Glucose 1-phosphate	446
	A Debranching Enzyme Also Is Needed for the Breakdown of Glycogen	447
	Phosphoglucomutase Converts Glucose 1-phosphate into Glucose 6-phosphate	448
	Liver Contains Glucose 6-phosphatase,	
	a Hydrolytic Enzyme Absent from Muscle	448
24.2	Phosphorylase Is Regulated by Allosteric	4.40
	Interactions and Reversible Phosphorylation Liver Phosphorylase Produces Glucose for Use by	449
	Other Tissues	449
	Muscle Phosphorylase Is Regulated by	
	the Intracellular Energy Charge	450
	Biochemical Characteristics of Muscle Fiber Types Differ	451
NEW	Phosphorylation Promotes the Conversion of Phosphorylase <i>b</i> to Phosphorylase <i>a</i>	451
	Phosphorylase Kinase Is Activated by Phosphorylation and Calcium Ions	452
66	Clinical Insight Hers Disease Is Due to a Phosphorylase Deficiency	453
24.3	Epinephrine and Glucagon Signal	
	the Need for Glycogen Breakdown	453
	G Proteins Transmit the Signal for the Initiation	457
	of Glycogen Breakdown Glycogen Breakdown Must Be Rapidly Turned	453
	Off When Necessary	455
	Biological Insight Glycogen Depletion Coincides	
	with the Onset of Fatigue	455
Cha	pter 25 Glycogen Synthesis	459
25.1	Glycogen Is Synthesized and Degraded by	
	Different Pathways	459
	UDP-Glucose Is an Activated Form of Glucose	460
	Glycogen Synthase Catalyzes the Transfer of Glucose from UDP-Glucose to a Growing Chain	460
	A Branching Enzyme Forms Alpha-1,6 Linkages	461
	Glycogen Synthase Is the Key Regulatory Enzyme	
	in Glycogen Synthesis	461
	Glycogen Is an Efficient Storage Form of Glucose	462
25.2	Metabolism in Context: Glycogen Breakdown and Synthesis Are Reciprocally Regulated	462
	Protein Phosphatase 1 Reverses the Regulatory	160
	Effects of Kinases on Glycogen Metabolism Insulin Stimulates Glycogen Synthesis by Inactivating	462
	Glycogen Synthase Kinase	464

	Glycogen Metabolism in the Liver Regulates the Blood-Glucose Concentration	465
.	Clinical Insight Diabetes Mellitus Results from	100
35	Insulin Insufficiency and Glucagon Excess	466
8	Clinical Insight A Biochemical Understanding of Glycogen-Storage Diseases Is Possible	467
	oter 26 The Pentose Phosphate	
Path	,	473
26.1	The Pentose Phosphate Pathway Yields NADPH and Five-Carbon Sugars	474
	Two Molecules of NADPH Are Generated in	
	the Conversion of Glucose 6-phosphate into Ribulose 5-phosphate	474
	The Pentose Phosphate Pathway and Glycolysis Are Linked by Transketolase and Transaldolase	474
26.2	· · · · · · · · · · · · · · · · · · ·	., .
	the Pentose Phosphate Pathway Are	
	Coordinately Controlled	478
	The Rate of the Pentose Phosphate Pathway Is Controlled by the Level of NADP ⁺	478
	The Fate of Glucose 6-phosphate Depends on	470
1	the Need for NADPH, Ribose 5-phosphate, and ATP NEW Clinical Insight The Pentose Phosphate	478
¥	Pathway Is Required For Rapid Cell Growth	481
26.3	Glucose 6-phosphate Dehydrogenase Lessens Oxidative Stress	481
.	Clinical Insight Glucose 6-phosphate	
	Dehydrogenase Deficiency Causes a Drug-Induced	401
-06-	Hemolytic Anemia	481
	Biological Insight A Deficiency of Clusses	
	Biological Insight A Deficiency of Glucose 6-phosphate Dehydrogenase Confers an	
	Biological Insight A Deficiency of Glucose 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances	483
	6-phosphate Dehydrogenase Confers an	483
SECT	6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances	483 487
SECT Fatty	6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances	
SECT Fatty Char	6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 / Acid and Lipid Metabolism	487
SECT Fatty Char	6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Oter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed	487 489
SECT Fatty Chap 27.1	6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Oter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages	487 489 489
SECT Fatty Chap 27.1	6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Oter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood	487 489 489
SECT Fatty Chap 27.1	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Deer 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized 	487 489 489 490
SECT Fatty Chap 27.1	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism oter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before 	487 489 489 490 491
SECT Fatty Chap 27.1	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Der 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if 	487 489 489 490 491 491
SECT Fatty Chap 27.1	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Deter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by 	487 489 489 490 491 491 493
SECT Fatty 27.1 27.1 NEW	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Der 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by Fatty Acid Oxidation The Complete Oxidation of Palmitate Yields 106 Molecules of ATP The Degradation of Unsaturated and 	487 489 489 490 491 491 493 493
SECT Fatty 27.1 27.1 NEW	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Deter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by Fatty Acid Oxidation The Complete Oxidation of Palmitate Yields 106 Molecules of ATP The Degradation of Unsaturated and Odd-Chain Fatty Acids Requires Additional Steps 	487 489 489 490 491 491 493 493
SECT Fatty 27.1 27.1 NEW	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Der 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by Fatty Acid Oxidation The Complete Oxidation of Palmitate Yields 106 Molecules of ATP The Degradation of Unsaturated and 	487 489 489 490 491 491 493 493 495
SECT Fatty 27.1 27.1 NEW	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Deter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by Fatty Acid Oxidation The Complete Oxidation of Palmitate Yields 106 Molecules of ATP The Degradation of Unsaturated and Odd-Chain Fatty Acids Requires Additional Steps An Isomerase and a Reductase Are Required for the 	487 489 489 490 491 491 493 493 495 495
SECT Fatty 27.1 27.1 NEW	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Deter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by Fatty Acid Oxidation The Complete Oxidation of Palmitate Yields 106 Molecules of ATP The Degradation of Unsaturated and Odd-Chain Fatty Acids Requires Additional Steps An Isomerase and a Reductase Are Required for the Oxidation of Unsaturated Fatty Acids Odd-Chain Fatty Acids Yield Propionyl CoA in the Final Thiolysis Step Ketone Bodies Are Another Fuel Source 	487 489 489 490 491 491 491 493 493 495 495 495
SECT Fatty 27.1 E NEW	 6-phosphate Dehydrogenase Confers an Evolutionary Advantage in Some Circumstances TION 12 Acid and Lipid Metabolism Deter 27 Fatty Acid Degradation Fatty Acids Are Processed in Three Stages Clinical Insight Triacylglycerols Are Hydrolyzed by Hormone-Stimulated Lipases Free Fatty Acids and Glycerol Are Released into the Blood Fatty Acids Are Linked to Coenzyme A Before They Are Oxidized Clinical Insight Pathological Conditions Result if Fatty Acids Cannot Enter the Mitochondria Acetyl CoA, NADH, and FADH₂ Are Generated by Fatty Acid Oxidation The Complete Oxidation of Palmitate Yields 106 Molecules of ATP The Degradation of Unsaturated and Odd-Chain Fatty Acids Requires Additional Steps An Isomerase and a Reductase Are Required for the Oxidation of Unsaturated Fatty Acids Odd-Chain Fatty Acids Yield Propionyl CoA in the Final Thiolysis Step 	487 489 489 490 491 491 491 493 493 495 495 495

	Contents	xxiii
3	NEW Clinical Insight Ketogenic Diets May Have	
	Therapeutic Properties	498
	Animals Cannot Convert Fatty Acids into Glucose	498
27.4	Metabolism in Context: Fatty Acid Metabolism	
	Is a Source of Insight into Various Physiological States	499
	Clinical Insight Diabetes Can Lead to a	499
φ	Life-Threatening Excess of Ketone-Body Production	499
8	Clinical Insight Ketone Bodies Are a Crucial Fuel Source During Starvation	500
3	NEW Clinical Insight Some Fatty Acids May Contribute	
	to the Development of Pathological Conditions	501
Chai	pter 28 Fatty Acid Synthesis	507
28.1	Fatty Acid Synthesis Takes Place in Three Stages	507
	Citrate Carries Acetyl Groups from Mitochondria to the Cytoplasm	508
	Several Sources Supply NADPH for Fatty Acid Synthesis	508
	The Formation of Malonyl CoA Is the Committed	500
	Step in Fatty Acid Synthesis	509
	Fatty Acid Synthesis Consists of a Series of	
	Condensation, Reduction, Dehydration, and Reduction Reactions	E10
	The Synthesis of Palmitate Requires 8 Molecules of	510
	Acetyl CoA, 14 Molecules of NADPH, and	
	7 Molecules of ATP	512
	Fatty Acids Are Synthesized by a Multifunctional	510
8	Enzyme Complex in Animals Clinical Insight Fatty Acid Metabolism Is Altered in	512
765	Tumor Cells	513
*	Clinical Insight A Small Fatty Acid That Causes Big Problems	513
28.2	Additional Enzymes Elongate and Desaturate	
	Fatty Acids	514
	Membrane-Bound Enzymes Generate Unsaturated Fatty Acids	514
	Eicosanoid Hormones Are Derived from	
	Polyunsaturated Fatty Acids	514
8	Clinical Insight Aspirin Exerts Its Effects by	515
20.7	Covalently Modifying a Key Enzyme	515
28.3	Acetyl CoA Carboxylase Is a Key Regulator of Fatty Acid Metabolism	516
	Acetyl CoA Carboxylase Is Regulated by Conditions	510
	in the Cell	516
	Acetyl CoA Carboxylase Is Regulated by a Variety of Hormones	516
28.4	Metabolism in Context: Ethanol Alters Energy	
	Metabolism in the Liver	517
Cha	pter 29 Lipid Synthesis: Storage Lipids,	
	spholipids, and Cholesterol	523
29.1	Phosphatidate Is a Precursor of Storage	
	Lipids and Many Membrane Lipids	523
	Triacylglycerol Is Synthesized from Phosphatidate in	E04
	Two Steps Phospholipid Synthesis Requires Activated Precursors	524 524
	r	

Phospholipid Synthesis Requires Activated Precursors	524
NEW Clinical Insight Phosphatidylcholine Is an	
Abundant Phospholipid	526

xxiv	Contents	
	Sphingolipids Are Synthesized from Ceramide	526
8	Clinical Insight Gangliosides Serve as Binding Sites for Pathogens	527
96	Clinical Insight Disrupted Lipid Metabolism Results in Respiratory Distress Syndrome and Tay–Sachs Disease	528
	Phosphatidic Acid Phosphatase Is a Key Regulatory Enzyme in Lipid Metabolism	529
29.2	Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages	529
	The Synthesis of Mevalonate Initiates the Synthesis of Cholesterol	530
	Squalene (C ₃₀) Is Synthesized from Six Molecules of Isopentenyl Pyrophosphate (C ₅)	530
007	Squalene Cyclizes to Form Cholesterol	532
	The Regulation of Cholesterol Synthesis Takes Place at Several Levels	532
29.4	Lipoproteins Transport Cholesterol and Triacylglycerols Throughout the Organism	534
	Low-Density Lipoproteins Play a Central Role in Cholesterol Metabolism	535
986	Clinical Insight The Absence of the LDL Receptor Leads to Familial Hypercholesterolemia and	
75	Atherosclerosis	536
66	NEW Clinical Insight Cycling of the LDL Receptor Is Regulated	537
₩ ¥	Clinical Insight HDL Seems to Protect Against Atherosclerosis NEW Clinical Insight The Clinical Management of	537
Ť	Cholesterol Levels Can Be Understood at a Biochemical Level	538
29.5	Cholesterol Is the Precursor of Steroid Hormones	539
1999	NEW Clinical Insight Bile Salts Facilitate Lipid	570
	Absorption Steroid Hormones Are Crucial Signal Molecules	539 539
	Vitamin D Is Derived from Cholesterol by the Energy of Sunlight	540
86	Clinical Insight Vitamin D Is Necessary for Bone Development	541
1	Clinical Insight Androgens Can Be Used to Artificially Enhance Athletic Performance	542
	Oxygen Atoms Are Added to Steroids by Cytochrome P450 Monooxygenases Metabolism in Context: Ethanol Also Is Processed by	542
	the Cytochrome P450 System	543
	TON 13	
	Metabolism of Nitrogen-Containing ecules	549
		343
	oter 30 Amino Acid Degradation and	551
	Jrea Cycle	551
50.1	Nitrogen Removal Is the First Step in the Degradation of Amino Acids	552
	Alpha-Amino Groups Are Converted into Ammonium Ions by the Oxidative Deamination of Glutamate	552
198	NEW Clinical Insight Blood Levels of	
NEM/	Amonitransferases Serve a Diagnostic Function	553 553
INLVV	Serine and Threonine Can Be Directly Deaminated Peripheral Tissues Transport Nitrogen to the Liver	555 554

30.2	Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates	555
NEW	Carbamoyl Phosphate Synthetase Is the Key Regulatory Enzyme for Urea Synthesis	556
NEW	Carbamoyl Phosphate Reacts with Ornithine to Begin the Urea Cycle	556
	The Urea Cycle Is Linked to Gluconeogenesis	557
3	Clinical Insight Metabolism in Context:	
	Inherited Defects of the Urea Cycle Cause	550
*	Hyperammonemia Biological Insight Hibernation Presents Nitrogen	558
	Disposal Problems	558
*	Biological Insight Urea Is Not the Only Means of Disposing of Excess Nitrogen	559
30.3	Carbon Atoms of Degraded Amino Acids	
	Emerge as Major Metabolic Intermediates	559
	Pyruvate Is a Point of Entry into Metabolism Oxaloacetate Is Another Point of Entry into	560
	Metabolism	561
	Alpha-Ketoglutarate Is Yet Another Point of Entry into	
	Metabolism	561
	Succinyl Coenzyme A Is a Point of Entry for	5(0)
	Several Nonpolar Amino Acids The Branched-Chain Amino Acids Yield Acetyl	562
	Coenzyme A, Acetoacetate, or Succinyl Coenzyme A	562
	Oxygenases Are Required for the Degradation of	
	Aromatic Amino Acids	563
35	Methionine Is Degraded into Succinyl Coenzyme A	565
8	Clinical Insight Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	565
	Can Distupt Annuo Aciu Degradation	505
8	NEW Clinical Insight Determining the Basis of the	
198	NEW Clinical Insight Determining the Basis of the Neurological Symptoms of Phenylketonuria	
8		566
Chap	Neurological Symptoms of Phenylketonuria Is an Active Area of Research	566 571
	Neurological Symptoms of Phenylketonuria Is an Active Area of Research	
	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis 5	571
	Neurological Symptoms of Phenylketonuria Is an Active Area of ResearchOter 31 Amino Acid Synthesis5The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase5	571 572
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deer 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates	571 572 573
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Second Synthesis Deter 31 Amino Acid Synthesis Second Synthesis The Nitrogenase Complex Fixes Nitrogen Second Synthesis The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Second	571 572 573
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deer 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates	571 572 573 573
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids	571 572 573 573 573 574
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple	571 572 573 573 573 574 574
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from	571 572 573 573 574 574 575
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate Clinical Insight Tetrahydrofolate Carries Activated One-Carbon Units S-Adenosylmethionine Is the Major Donor of	571 572 573 573 574 574 574 575 576
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate Clinical Insight Tetrahydrofolate Carries Activated One-Carbon Units	571 572 573 573 574 574 574 575 576 576
31.1	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate Clinical Insight Tetrahydrofolate Carries Activated One-Carbon Units S-Adenosylmethionine Is the Major Donor of Methyl Groups Clinical Insight High Homocysteine Levels Correlate with Vascular Disease	571 572 573 573 574 574 575 576 576 576 578
31.1 31.2 T	Neurological Symptoms of Phenylketonuria Is an Active Area of Research oter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate Clinical Insight Tetrahydrofolate Carries Activated One-Carbon Units S-Adenosylmethionine Is the Major Donor of Methyl Groups Clinical Insight High Homocysteine Levels	571 572 573 573 574 574 575 576 576 576 578
31.1 31.2 T	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate Clinical Insight Tetrahydrofolate Carries Activated One-Carbon Units S-Adenosylmethionine Is the Major Donor of Methyl Groups Clinical Insight High Homocysteine Levels Correlate with Vascular Disease Feedback Inhibition Regulates Amino Acid Biosynthesis The Committed Step Is the Common Site	571 572 573 573 574 574 574 575 576 576 576 578 578 578
31.1 31.2 T	Neurological Symptoms of Phenylketonuria Is an Active Area of Research Deter 31 Amino Acid Synthesis The Nitrogenase Complex Fixes Nitrogen The Molybdenum–Iron Cofactor of Nitrogenase Binds and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid Through Glutamate and Glutamine Amino Acids Are Made from Intermediates of Major Pathways Human Beings Can Synthesize Some Amino Acids but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions Serine, Cysteine, and Glycine Are Formed from 3-Phosphoglycerate Clinical Insight Tetrahydrofolate Carries Activated One-Carbon Units S-Adenosylmethionine Is the Major Donor of Methyl Groups Clinical Insight High Homocysteine Levels Correlate with Vascular Disease Feedback Inhibition Regulates Amino Acid Biosynthesis	571 572 573 573 574 574 574 575 576 576 576 578

Cha	pter 32 Nucleotide Metabolism	585
32.1	An Overview of Nucleotide Biosynthesis and	
	Nomenclature	586
32.2	The Pyrimidine Ring Is Assembled and	
	Then Attached to a Ribose Sugar	587
	CTP Is Formed by the Amination of UTP	589
	Kinases Convert Nucleoside Monophosphates into Nucleoside Triphosphates	589
8	NEW Clinical Insight Salvage Pathways Recycle Pyrimidine Bases	589
32.3	The Purine Ring Is Assembled on Ribose Phosphate	590
	AMP and GMP Are Formed from IMP	590
886	Clinical Insight Enzymes of the Purine-Synthesis Pathway Are Associated with One Another in Vivo	592
	Bases Can Be Recycled by Salvage Pathways	593
32.4	Ribonucleotides Are Reduced to	
	Deoxyribonucleotides	593
	Thymidylate Is Formed by the Methylation of Deoxyuridylate	594
198	Clinical Insight Several Valuable Anticancer Drugs Block the Synthesis of Thymidylate	595
32.5	Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	596
	Pyrimidine Biosynthesis Is Regulated by Aspartate Transcarbamoylase	596
	The Synthesis of Purine Nucleotides Is Controlled by Feedback Inhibition at Several Sites	596
B	NEW Clinical Insight The Synthesis of	
	Deoxyribonucleotides Is Controlled by the	507
70 (Regulation of Ribonucleotide Reductase	597
32.6	Disruptions in Nucleotide Metabolism Can	598
æ	Cause Pathological Conditions Clinical Insight The Loss of Adenosine Deaminase	390
	Activity Results in Severe Combined	
	Immunodeficiency	598
198	Clinical Insight Gout Is Induced by High Serum Levels of Urate	599
	Clinical Insight Lesch–Nyhan Syndrome Is a	
	Dramatic Consequence of Mutations in a	
35	Salvage-Pathway Enzyme	600
88	Clinical Insight Folic Acid Deficiency Promotes Birth Defects Such As Spina Bifida	600
	RT III	
Synt	thesizing the Molecules of Life	

Section 14 Nucleic Acid Structure and DNA Replication 605		
	pter 33 The Structure of Informational cromolecules: DNA and RNA	607
33.1	A Nucleic Acid Consists of Bases Linked to a Sugar–Phosphate Backbone	608
	DNA and RNA Differ in the Sugar Component and One of the Bases	608
	Nucleotides Are the Monomeric Units of Nucleic Acids DNA Molecules Are Very Long and Have Directionality	609 610

	Contents	XXV
33.2	Nucleic Acid Strands Can Form a Double-Helical	(11
	Structure The Double Helix Is Stabilized by Hydrogen	611
	Bonds and the Hydrophobic Effect The Double Helix Facilitates the Accurate	611
	Transmission of Hereditary Information	613
	Meselson and Stahl Demonstrated That Replication Is Semiconservative	614
	The Strands of the Double Helix Can Be Reversibly Separated	615
33.3	DNA Double Helices Can Adopt Multiple Forms	615
	Z-DNA Is a Left-Handed Double Helix in Which Backbone Phosphoryl Groups Zigzag	616
	The Major and Minor Grooves Are Lined by	
	Sequence-Specific Hydrogen-Bonding Groups Double-Stranded DNA Can Wrap Around Itself to Form	616
	Supercoiled Structures	617
33.4	Eukaryotic DNA Is Associated with Specific Proteins	619
	Nucleosomes Are Complexes of DNA and Histones	619
	Eukaryotic DNA Is Wrapped Around Histones to Form	
Ъ.	Nucleosomes	620
8	Clinical Insight Damaging DNA Can Inhibit Cancer-Cell Growth	622
33.5	RNA Can Adopt Elaborate Structures	622
Cha	pter 34 DNA Replication	627
34.1	•	628
	DNA Polymerase Catalyzes Phosphodiester-Linkage Formation	628
	The Specificity of Replication Is Dictated by the Complementarity of Bases	630
	Clinical Insight The Separation of DNA Strands Requires Specific Helicases and ATP Hydrolysis	630
	Topoisomerases Prepare the Double Helix for Unwinding	632
	Clinical Insight Bacterial Topoisomerase Is a Therapeutic Target	632
	Many Polymerases Proofread the Newly Added Bases and Excise Errors	633
34.2		633
01.2	DNA Replication in <i>E. coli</i> Begins at a Unique Site	634
	An RNA Primer Synthesized by Primase Enables DNA Synthesis to Begin	634
	One Strand of DNA Is Made Continuously and the Other Strand Is Synthesized in Fragments	635
	DNA Replication Requires Highly Processive Polymerases	635
	The Leading and Lagging Strands Are Synthesized in a Coordinated Fashion	636
	DNA Synthesis Is More Complex in Eukaryotes Than in Bacteria	638
	Telomeres Are Unique Structures at the Ends of Linear Chromosomes	638
18	Clinical Insight Telomeres Are Replicated by	
	Telomerase, a Specialized Polymerase That Carries Its Own RNA Template	639
Char	tor 75 DNA Bonair and Basembination	647
	pter 35 DNA Repair and Recombination Errors Can Arise in DNA Replication	643 644
JJ.I		044

xxvi Contents

T	Clinical Insight Some Genetic Diseases Are Caused by the Expansion of Repeats of Three Nucleotides	644
	Bases Can Be Damaged by Oxidizing Agents, Alkylating Agents, and Light	645
35.2	DNA Damage Can Be Detected and Repaired	647
	The Presence of Thymine Instead of Uracil in DNA Permits the Repair of Deaminated Cytosine	649
B	Clinical Insight Many Cancers Are Caused by the Defective Repair of DNA	650
86	Clinical Insight Many Potential Carcinogens Can Be Detected by Their Mutagenic Action on Bacteria	650
35.3	DNA Recombination Plays Important Roles in Replication and Repair	651
	Double Strand Breaks Can Be Repaired by Recombination	652
	DNA Recombination Is Important in a Variety of Biological Processes	652

SECTION 15

RNA	Synthesis, Processing, and Regulation	657
	pter 36 RNA Synthesis and Regulation	(50
		659
36.1	Cellular RNA Is Synthesized by RNA Polymerases	659
	Genes Are the Transcriptional Units	660
	RNA Polymerase Is Composed of Multiple Subunits	661
36.2	RNA Synthesis Comprises Three Stages	661
	Transcription Is Initiated at Promoter Sites on the DNA Template	661
	Sigma Subunits of RNA Polymerase Recognize Promoter Sites	662
	RNA Strands Grow in the 5'-to-3' Direction	663
	Elongation Takes Place at Transcription Bubbles That Move Along the DNA Template	664
	An RNA Hairpin Followed by Several Uracil Residues Terminates the Transcription of Some Genes	664
	The Rho Protein Helps Terminate the Transcription of Some Genes	665
	Precursors of Transfer and Ribosomal RNA Are Cleaved and Chemically Modified After Transcription	666
8	Clinical Insight Some Antibiotics Inhibit	
	Transcription	667
36.3	The lac Operon Illustrates the Control of	
	Bacterial Gene Expression	668
	An Operon Consists of Regulatory Elements and	
	Protein-Encoding Genes	668
	Ligand Binding Can Induce Structural Changes in Regulatory Proteins	669
	Transcription Can Be Stimulated by Proteins That Contact RNA Polymerase	669
1	Clinical and Biological Insight Many Bacterial Cells Release Chemical Signals That Regulate Gene	
	Expression in Other Cells	670
	Some Messenger RNAs Directly Sense Metabolite Concentrations	670

Chapter 37 Gene Expression in Eukaryotes 37.1 Eukaryotic Cells Have Three Types of RNA Polymerases 676 37.2 RNA Polymerase II Requires Complex Regulation 678 The Transcription Factor IID Protein Complex Initiates the Assembly of the Active Transcription Complex 679 Enhancer Sequences Can Stimulate Transcription at Start Sites Thousands of Bases Away 679 **Clinical Insight** Inappropriate Enhancer Use May Cause Cancer 680 Multiple Transcription Factors Interact with Eukaryotic Promoters and Enhancers 680 **Clinical Insight Induced Pluripotent Stem Cells** Can Be Generated by Introducing Four Transcription **Factors into Differentiated Cells** 680 37.3 Gene Expression Is Regulated by Hormones 681 Nuclear Hormone Receptors Have Similar Domain Structures 681 Nuclear Hormone Receptors Recruit Coactivators and Corepressors 682 **Clinical Insight** Steroid-Hormone Receptors Are Targets for Drugs 683 37.4 Histone Acetylation Results in Chromatin Remodeling 684 Metabolism in Context: Acetyl CoA Plays a Key Role in the Regulation of Transcription 684 Histone Deacetylases Contribute to Transcriptional Repression 686 Chapter 38 RNA Processing in Eukaryotes **691** 38.1 Mature Ribosomal RNA Is Generated by the Cleavage of a Precursor Molecule 692 38.2 Transfer RNA Is Extensively Processed 692 38.3 Messenger RNA Is Modified and Spliced 693 Sequences at the Ends of Introns Specify Splice Sites in mRNA Precursors 694 Small Nuclear RNAs in Spliceosomes Catalyze the Splicing of mRNA Precursors 695 **Clinical Insight** Mutations That Affect Pre-mRNA Splicing Cause Disease 696 Clinical Insight Most Human Pre-mRNAs Can Be Spliced in Alternative Ways to Yield Different Proteins 697 The Transcription and Processing of mRNA 698 Are Coupled **Biological Insight RNA Editing Changes** the Proteins Encoded by mRNA 698 38.4 RNA Can Function as a Catalyst 699 SECTION 16 Protein Synthesis and Recombinant DNA 705 Techniques **Chapter 39 The Genetic Code** 707 39.1 The Genetic Code Links Nucleic Acid and **Protein Information** 708 The Genetic Code Is Nearly Universal 708

675

	Transfer RNA Molecules Have a Common Design Some Transfer RNA Molecules Recognize More Than One Codon Because of Wobble in Reco Paging	709
	in Base-Pairing The Synthesis of Long Proteins Requires a Low Error Frequency	711 712
39.2	Amino Acids Are Activated by Attachment to Transfer RNA	712
	Amino Acids Are First Activated by Adenylation	712
	Aminoacyl-tRNA Synthetases Have Highly Discriminating Amino Acid Activation Sites	714
	Proofreading by Aminoacyl-tRNA Synthetases Increases the Fidelity of Protein Synthesis	714
	Synthetases Recognize the Anticodon Loops and Acceptor Stems of Transfer RNA Molecules	714
39.3	A Ribosome Is a Ribonucleoprotein Particle Made of Two Subunits	715
	Ribosomal RNAs Play a Central Role in Protein Synthesis	715
	Messenger RNA Is Translated in the 5'-to-3'	
	Direction	716
	pter 40 The Mechanism of	
	tein Synthesis	721
40.1	Protein Synthesis Decodes the Information in Messenger RNA	722
	Ribosomes Have Three tRNA-Binding Sites That Bridge the 30S and 50S Subunits	722
	The Start Signal Is AUG Preceded by Several Bases That Pair with 16S Ribosomal RNA	722
	Bacterial Protein Synthesis Is Initiated by Formylmethionyl Transfer RNA	723
	Formylmethionyl-tRNA _f Is Placed in the P Site of the Ribosome in the Formation of the 70S Initiation Complex	724
	Elongation Factors Deliver Aminoacyl-tRNA to the Ribosome	724
40.2	Peptidyl Transferase Catalyzes Peptide-Bond Synthesis	725
	The Formation of a Peptide Bond Is Followed by the GTP-Driven Translocation of tRNAs and mRNA	725
	Protein Synthesis Is Terminated by Release Factors That Read Stop Codons	728
40.3	Bacteria and Eukaryotes Differ in the Initiation of Protein Synthesis	728
86	Clinical Insight Mutations in Initiation Factor 2 Cause a Curious Pathological Condition	730
40.4	A Variety of Biomolecules Can Inhibit Protein	
200	Synthesis	730
88	Clinical Insight Some Antibiotics Inhibit Protein Synthesis	730
*	Clinical Insight Diphtheria Toxin Blocks Protein Synthesis in Eukaryotes by Inhibiting Translocation	731
*	Clinical Insight Ricin Fatally Modifies 28S Ribosomal RNA	732
40.5	Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and Membrane Proteins	733

	Contents	xxvii
	Protein Synthesis Begins on Ribosomes That Are Free in the Cytoplasm	733
	Signal Sequences Mark Proteins for Translocation Across the Endoplasmic Reticulum Membrane	733
40.6	Protein Synthesis Is Regulated by a Number of Mechanisms	735
	Messenger RNA Use Is Subject to Regulation The Stability of Messenger RNA Also Can Be	735
	Regulated Small RNAs Can Regulate mRNA Stability and Use	736 736
Cha	oter 41 Recombinant DNA Techniques	743
	Nucleic Acids Can Be Synthesized from	
	Protein-Sequence Data Protein Sequence Is a Guide to Nucleic Acid	744
	Information	744
	DNA Probes Can Be Synthesized by Automated Methods	744
41.2		
	Revolutionized All Aspects of Biology Restriction Enzymes Split DNA into Specific	745
	Fragments	745
	Restriction Fragments Can Be Separated by Gel Electrophoresis and Visualized	746
	Restriction Enzymes and DNA Ligase Are Key Tools for Forming Recombinant DNA Molecules	747
41.3	Eukaryotic Genes Can Be Manipulated with Considerable Precision	748
	Complementary DNA Prepared from mRNA Can Be	
	Expressed in Host Cells Estrogen-Receptor cDNA Can Be Identified by Screening a cDNA Library	748 749
	Complementary DNA Libraries Can Be Screened for Synthesized Protein	750
	Specific Genes Can Be Cloned from Digests of Genomic DNA	750
	DNA Can Be Sequenced by the Controlled	750
	Termination of Replication Clinical and Biological Insight Next-Generation	751
	Sequencing Methods Enable the Rapid Determination of a Complete Genome Sequence	753
	Selected DNA Sequences Can Be Greatly Amplified by the Polymerase Chain Reaction	754
86	Clinical and Biological Insight PCR Is a Powerful Technique in Medical Diagnostics, Forensics, and	
	Studies of Molecular Evolution Gene-Expression Levels Can Be Comprehensively	756
	Examined	756
Appe	ndices	A1
Gloss	sary	B 1
Answ	ers to Problems	C1
Index		D1
	ted Readings e at www.whfreeman.com/tymoczko3e)	E1

this page left intentionally blank

CHAPTER 1 Biochemistry and the Unity of Life

CHAPTER 2 Water, Weak Bonds, and the Generation of Order Out of Chaos

Biochemistry Helps Us to Understand Our World

The ultimate goal of all scientific endeavors is to develop a deeper, richer understanding of ourselves and the world in which we live. Biochemistry has had and will continue to have an extensive role in helping us to develop this understanding. *Biochemistry*, the study of living organisms at the molecular level, has shown us many of the details of the most fundamental processes of life. For instance, biochemistry has shown us how information flows from genes to molecules that have functional capabilities. In recent years, biochemistry has also unraveled some of the mysteries of the molecular generators that provide the energy that powers living organisms. The realization that we can understand such essential life processes has significant philosophical implications. What does it mean, biochemically, to be human? What are the biochemical differences between a human being, a chimpanzee, a mouse, and a fruit fly? Are we more similar than we are different?

The understanding achieved through biochemistry is greatly influencing medicine and other fields. Although we may not be accustomed to thinking of illness in relation to molecules, illness is ultimately some sort of malfunction at the molecular level. The molecular lesions causing sickle-cell anemia, cystic fibrosis, hemophilia, and many other genetic diseases have been elucidated at the biochemical level. Biochemistry is also contributing richly to clinical diagnostics. For example, elevated levels of heart enzymes in the blood reveal whether a patient has recently had a myocardial infarction (heart attack). Agriculture, too, is employing biochemistry to develop more effective, environmentally safer herbicides and pesticides and to create genetically engineered plants that are, for example, more resistant to insects.

In this section, we will learn some of the key concepts that structure the study of biochemistry. We begin with an introduction to the molecules of biochemistry, followed by an overview of the fundamental unit of biochemistry and life itself—the cell. Finally, we examine the weak reversible bonds that enable the formation of biological structures and permit the interplay between molecules that makes life possible.

\checkmark By the end of this section, you should be able to:

- ✓ 1 Describe the key classes of biomolecules and differentiate between them.
- ✓ 2 List the steps of the central dogma.
- ✓ 3 Identify the key features that differentiate eukaryotic cells from prokaryotic cells.
- ✓ 4 Describe the chemical properties of water and explain how water affects biochemical interactions.
- ✓ 5 Describe the types of noncovalent, reversible interactions and explain why reversible interactions are important in biochemistry.
- ✓ 6 Define pH and explain why changes in pH may affect biochemical systems.

Biochemistry and the Unity of Life

- **1.1** Living Systems Require a Limited Variety of Atoms and Molecules
- **1.2** There Are Four Major Classes of Biomolecules
- **1.3** The Central Dogma Describes the Basic Principles of Biological Information Transfer
- **1.4** Membranes Define the Cell and Carry Out Cellular Functions

Despite their vast differences in mass—the African elephant has a mass 3×10^{18} times as great as that of the bacterium *E. coli*—and complexity, the biochemical workings of these two organisms are remarkably similar. [*E. coli*: Eye of Science/Science Source. Elephant: John Michael Evan Potter/Shutterstock.]

key goal of biochemistry, one that has been met with striking success, is to understand what it means to be alive at the molecular level. Another goal is to extend this understanding to the organismic level—that is, to understand the effects of molecular manipulations on the life that an organism leads. For instance, understanding how the hormone insulin works at the molecular level illuminates how the organism controls the levels of common fuels—glucose and fats—in its blood. Often, such understanding facilitates an understanding of disease states, such as diabetes, which results when insulin signaling goes awry. In turn, this knowledge can be a source of insight into how the disease can be treated.

Biochemistry has been an active area of research for more than a century. Much knowledge has been gained about how a variety of organisms manipulate energy and information. However, one of the most exciting outcomes of biochemical research has been the realization that all organisms have much in common biochemically. Organisms are remarkably uniform at the molecular level. This observation is frequently referred to as the unity of biochemistry, but, in reality, it illustrates the unity of life. French biochemist Jacques Monod encapsulated this idea in 1954 with the phrase "Anything found to be true of [the bacterium] *E. coli* must also be true of elephants." This uniformity reveals that all organisms on Earth have arisen from a common ancestor. A core of essential biochemical processes, common to all organisms, appeared early in the evolution of life. The diversity of life in the modern world has been generated by evolutionary processes acting on these core processes through millions or even billions of years.

We begin our study of biochemistry by looking at commonalities. We will examine the molecules and molecular constituents that are used by all life forms and will then consider the rules that govern how biochemical information is accessed and how it is passed from one generation to the next. Finally, we will take an overview of the fundamental unit of life—the cell. This is just the beginning. All of the molecules and structures that we see in this chapter we will meet again and again as we explore the chemical basis of life.

1.1 Living Systems Require a Limited Variety of Atoms and Molecules

Ninety naturally occurring elements have been identified, yet only three oxygen, hydrogen, and carbon—make up 98% of the atoms in an organism. Moreover, the abundance of these three elements in life is vastly different from their abundance in Earth's crust (**Table 1.1**). What can account for the disparity between what is available and what organisms are made of?

One reason that oxygen and hydrogen are so common is the ubiquity of water, or "the matrix of life," as biochemist Albert Szent-Györgi called it. This tiny molecule—consisting of only three atoms—makes life on Earth possible. Indeed, current belief is that all life requires water, which is why so much effort has been made in recent decades to determine whether Mars had water in the past and whether it still does. The importance of water for life is so crucial that its presence is tantamount to saying that life could be present. We will consider the properties of water and how these properties facilitate biochemistry in Chapter 2.

After oxygen and hydrogen, the next most-common element in living organisms is carbon. Most large molecules in living systems are made up predominantly of carbon. Fuel molecules are made entirely of carbon, hydrogen,

	Composition in		
Element	Human beings (%)	Seawater (%)	Earth's crust (%)
Hydrogen	63	66	0.22
Oxygen	25.5	33	47
Carbon	9.5	0.0014	0.19
Nitrogen	1.4	< 0.1	< 0.1
Calcium	0.31	0.006	3.5
Phosphorus	0.22	< 0.1	< 0.1
Chloride	0.03	0.33	< 0.1
Potassium	0.06	0.006	2.5
Sulfur	0.05	0.017	< 0.1
Sodium	0.03	0.28	2.5
Magnesium	0.01	0.003	2.2
Silicon	<0.1	< 0.1	28
Aluminum	< 0.1	< 0.1	7.9
Iron	<0.1	<0.1	4.5
Titanium	<0.1	<0.1	0.46
All others	<0.1	<0.1	<0.1

 Table 1.1
 Chemical compositions as percentage of total number of atoms

Note: Because of rounding, total percentages do not equal 100%.

Source: Data from E. Frieden, The chemical elements of life, Sci. Am. 227(1), 1972, p. 54.

and oxygen. Biological fuels, like the fuels that power machinery, react with oxygen to produce carbon dioxide and water. In regard to biological fuels, this reaction, called combustion, provides the energy to power the cell. As a means of seeing why carbon is uniquely suited for life, let us compare it with silicon, its nearest elemental relative. Silicon is much more plentiful than carbon in Earth's crust (Table 1.1), and, like carbon, can form four covalent bonds-a property crucial to the construction of large molecules. However, carbon-to-carbon bonds are stronger than silicon-to-silicon bonds. This difference in bond strength has two important consequences. First, large molecules can be built with the use of carbon-carbon bonds as the backbone because of the stability of these bonds. Second, more energy is released when carbon-carbon bonds undergo combustion than when silicon reacts with oxygen. Thus, carbon-based molecules are stronger construction materials and are better fuels than silicon-based molecules. Carbon even has an advantage over silicon after it has undergone combustion. Carbon dioxide is readily soluble in water and can exist as a gas; thus, it remains in biochemical circulation, given off by one tissue or organism to be used by another tissue or organism. In contrast, silicon is essentially insoluble after reaction with oxygen. After it has combined with oxygen, it is permanently out of circulation. Quartz is a common form of silicon dioxide.

Other elements have essential roles in living systems—notably, nitrogen, phosphorus, and sulfur. Moreover, some of the trace elements, although present in tiny amounts compared with oxygen, hydrogen, and carbon, are absolutely vital to a number of life processes. We will see specific uses of these elements as we proceed with our study of biochemistry.

1.2 There Are Four Major Classes of Biomolecules

Living systems contain a dizzying array of biomolecules. However, these biomolecules can be divided into just four classes: proteins, nucleic acids, lipids, and carbohydrates.

Proteins Are Highly Versatile Biomolecules

Much of our study of biochemistry will revolve around proteins. *Proteins* are constructed from 20 building blocks, called amino acids, linked by peptide bonds to form long unbranched polymers (**Figure 1.1**). These polymers fold into precise three-dimensional structures that facilitate a vast array of biochemical functions. Proteins serve as signal molecules (e.g., the hormone insulin signals that fuel is in the blood) and as receptors for signal molecules. Receptors convey to the cell that a signal has been received and initiates the cellular response. Thus, for example, insulin binds to its particular receptor, called the insulin receptor, and initiates the biological response to the presence of fuel in the blood. Proteins also play structural roles, allow mobility, and provide defenses against environmental ✓ 1 Describe the key classes of biomolecules and differentiate between them.

Amino acid sequence

Figure 1.1 Protein folding. The three-dimensional structure of a protein is dictated by the sequence of amino acids that constitute the protein.

2

Adenosine triphosphate (ATP)

Figure 1.2 The structure of a

nucleotide. A nucleotide (in this case, adenosine triphosphate) consists of a base (shown in blue), a five-carbon sugar (black), and at least one phosphoryl group (red).

Figure 1.3 The double helix. Two

individual chains of DNA interact to form a double helix. The sugar–phosphate backbone of one of the two chains is shown in red; the other is shown in blue. The bases are shown in green, purple, orange, and yellow. dangers. Perhaps the most prominent role of proteins is that of *catalysts*—agents that enhance the rate of a chemical reaction without being permanently affected themselves. Protein catalysts are called *enzymes*. Every process that takes place in living systems depends on enzymes.

Nucleic Acids Are the Information Molecules of the Cell

As information keepers of the cell, the primary function of *nucleic acids* is to store and transfer information. They contain the instructions for all cellular functions and interactions. Like

proteins, nucleic acids are linear molecules. However, nucleic acids are constructed from only four building blocks called *nucleotides*. A nucleotide is made up of a five-carbon sugar, either a deoxyribose or a ribose, attached to a heterocyclic ring structure called a base and at least one phosphoryl group (Figure 1.2).

There are two types of nucleic acid: *deoxyribonucleic acid* (DNA) and *ribonucleic acid* (RNA). Genetic information is stored in DNA—the "parts list" that determines the nature of an organism. DNA is constructed from four deoxyribonucleotides, differing from one another only in the ring structure of the bases—adenine (A), cytosine (C), guanine (G), and thymine (T). The information content of DNA is the sequence of nucleotides linked together by phosphodiester linkages. DNA in all higher organisms exists as a double-stranded helix (**Figure 1.3**). In the double helix, the bases interact with one another—A with T and C with G.

RNA is a single-stranded form of nucleic acid. Some regions of DNA are copied as a special class of RNA molecules called messenger RNA (mRNA). mRNA is a template for the synthesis of proteins. Unlike DNA, mRNA is frequently broken down after use. RNA is similar to DNA in composition with two exceptions: the base thymine (T) is replaced by the base uracil (U), and the sugar component of the ribonucleotides contains an additional hydroxyl (—OH) group.

Lipids Are a Storage Form of Fuel and Serve as a Barrier

Among the key biomolecules, *lipids* are much smaller than proteins or nucleic acids. Whereas proteins and nucleic acids can have molecular weights of thousands to millions, a typical lipid has a molecular weight of 1300 g mol⁻¹. Moreover, lipids are not polymers made of repeating units, as are proteins and nucleic acids. A key characteristic of many biochemically important lipids is their dual chemical nature: part of the molecule is hydrophilic, meaning that it can dissolve in water, whereas the other part, made up of one or more hydrocarbon chains, is hydrophobic and cannot dissolve in water (Figure 1.4). This dual nature allows lipids to form barriers that delineate the cell from its environment and to establish intracellular compartments. In other words, lipids allow the development of "inside" and "outside" at a biochemical level. The hydrocarbon chains cannot interact with water and, instead, interact with those of other lipids to form a barrier, or membrane, whereas the water-soluble components interact with the aqueous environment on either side of the membrane. Lipids are also an important storage form of energy. As we will see, the hydrophobic component of lipids can undergo combustion to provide large amounts of cellular energy. Lipids are crucial signal molecules as well.

Figure 1.4 The dual properties of lipids. (A) One part of a lipid molecule is hydrophilic; the other part is hydrophobic. (B) In water, lipids can form a bilayer, constituting a barrier that separates two aqueous compartments.

Carbohydrates Are Fuels and Informational Molecules

Most of us already know that *carbohydrates* are an important fuel source for most living creatures. The most-common carbohydrate fuel is the simple sugar glucose. Glucose is stored in animals as *glycogen*, which consists of many glucose molecules linked end-to-end and has occasional branches (**Figure 1.5**). In plants, the storage form of glucose is starch, which is similar to glycogen in molecular composition.

There are thousands of different carbohydrates. They can be linked together in chains, and these chains can be highly branched, much more so than in glycogen or starch. Such chains of carbohydrates play important roles in helping cells to recognize one another. Many of the components of the cell exterior are decorated with various carbohydrates that can be identified by other cells and serve as sites of cell-to-cell interactions.

QUICK QUIZ 1 Name the four classes of biomolecules, and state an important function of each class.

Figure 1.5 The structure of glycogen. Glycogen is a branched polymer composed of glucose molecules. The protein identified by the letter G at the center of the glycogen molecule is required for glycogen synthesis (Chapter 25).

1.3 The Central Dogma Describes the Basic Principles of Biological Information Transfer

✓ 2 List the steps of the central dogma.

Information processing in all cells is quite complex. It increases in complexity as cells become parts of tissues and as tissues become components of organisms. The scheme that underlies information processing at the level of gene expression was first proposed by Francis Crick in 1958.

Replication Transcription Translation RNA → Protein

Crick called this scheme the *central dogma*: information flows from DNA to RNA and then to protein. Moreover, DNA can be replicated. The basic tenets of this dogma are true, but, as we will see later, this scheme is not as simple as depicted.

8 1 Biochemistry and the Unity of Life

Figure 1.6 DNA replication. When the two strands of a DNA molecule are separated, each strand can serve as a template for the synthesis of a new partner strand. DNA polymerase catalyzes replication.

DID YOU KNOW?

As defined in the Oxford English Dictionary, to transcribe means to make a copy of (something) in writing; to copy out from an original; to write (a copy). DNA constitutes the heritable information—the *genome*. This information is packaged into discrete units called *genes*. It is this collection of genes that determines the physical nature of the organism. When a cell duplicates, DNA is copied and identical genomes are then present in the newly formed daughter cells. The process of copying the genome is called *replication*. A group of enzymes, collectively called *DNA polymerase*, catalyze the replication process (Figure 1.6).

Genes are useless in and of themselves. The information must be rendered accessible. This accessibility is achieved in the process of *transcription* through which one form of nucleic acid, DNA, is transcribed into another form, RNA. The enzyme *RNA polymerase* catalyzes this process (**Figure 1.7**). Which genes are transcribed, as well as when and where they are transcribed, is crucial to the fate of the cell. For instance, although each cell in a human body has the DNA information that encodes the instructions to make all tissues, this information is parceled out. The genes expressed in the liver are different from those expressed in the muscles and brain. *Indeed, it is this selective expression that defines the function of a cell or tissue*.

A key aspect of the selective expression of genetic information is the transcription of genes into mRNA. The information encoded in mRNA is realized in the process of *translation* because information is literally translated from one chemical form (nucleic acid) into another (protein). Proteins have been described as the workhorses of the cell, and *translation renders the genetic information into a functional form*. Translation takes place on large macromolecular complexes called *ribosomes*, consisting of RNA and protein (Figure 1.8).

Now that you have been introduced to the key biomolecules and have briefly examined the central dogma of information transfer, let us look at the platform—the cell—that contains and coordinates the biochemistry required for life.

Figure 1.7 The transcription of RNA. Transcription, catalyzed by RNA polymerase, makes an RNA copy of one of the strands of DNA.

Figure 1.8 Translation takes place on ribosomes. A ribosome decodes the information in mRNA and translates it into the amino acid sequence of a protein.

✓ 3 Identify the key features that differentiate eukaryotic cells from prokaryotic cells.

1.4 Membranes Define the Cell and Carry Out Cellular Functions

The cell is the basic unit of life. Cells grow, replicate, and interact with their environment. Living organisms can be as simple as a single cell or as complex as a human body, which is composed of approximately 100 trillion cells. Every cell is delineated by a membrane that separates the inside of the cell from its environment. A *membrane* is a *lipid bilayer*: two layers of lipids organized with their hydrophobic chains interacting with one another and the hydrophilic head groups

Figure 1.9 The bilayer structure of a membrane. (A) Membranes are composed of two layers or sheets. (B) The hydrophobic parts of the layers interact with each other, and the hydrophilic parts interact with the environment. [J. D. Robertson. "Discovery in Cell Biology: Membrane Structure." Journal of Cell Biology 91(1981): 189s-204s. Courtesy of J.D. Robertson.]

interacting with the environment (Figure 1.9).

There are two basic types of cells: eukaryotic cells and prokaryotic cells (Figure 1.10). The main difference between the two is the existence of membrane-enclosed compartments in eukaryotes and the absence of such compartments in prokaryotes. Prokaryotic cells, exemplified by the human gut

(B) Eukaryotic cell

Figure 1.10 Prokaryotic and eukaryotic cells. Eukaryotic cells display more internal structure than do prokaryotic cells. Components within the interior of a eukaryotic cell, most notably the nucleus, are defined by membranes. [Micrographs: (A) @Biology Pics/Science Source; (B) from P. C. Cross and K. L. Mercer, Cell Tissue Ultrastructure: A Functional Perspective (W. H. Freeman and Company, 1993), p. 199. Diagrams: (A and B) Information from H. Lodish et al., Molecular Cell Biology, 6th ed. (W. H. Freeman and Company, 2008), p. 3.]